
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024 1753

xNet: Modeling Network Performance
With Graph Neural Networks

Sijiang Huang , Yunze Wei, Lingfeng Peng, Mowei Wang , Linbo Hui , Peng Liu,
Zongpeng Du, Zhenhua Liu, and Yong Cui , Member, IEEE

Abstract— Today’s network is notorious for its complexity and
uncertainty. Network operators often rely on network models
for efficient network planning, operation, and optimization. The
network model is responsible for understanding the complex
relationships between network performance metrics (e.g., delay
and jitter) and network characteristics (e.g., traffic and con-
figuration). However, we still lack a systematic approach to
developing accurate and lightweight network models that are
aware of the impact of network configurations (i.e., expressive-
ness) and provide fine-grained flow-level temporal predictions
(i.e., granularity). In this paper, we propose xNet, a data-
driven network modeling framework based on graph neural
networks (GNN). It is worth noting that xNet is not a dedicated
network model designed for a specific network scenario with
constraint considerations. On the contrary, xNet provides a
general approach to modeling the network characteristics of
concern with relation graph representations and configurable
GNN blocks. xNet learns the state transition functions between
time steps and rolls them out to obtain the full fine-grained
prediction trajectory. We implement and instantiate xNet with
three use cases. The experimental results show that xNet can
accurately predict different performance metrics (i.e. temporal
and steady-state QoS) in different scenarios, with performance
comparable to state-of-the-art domain-specific models. Compared
with traditional packet-level simulators, xNet achieves a speed
improvement of more than two orders of magnitude, demon-
strating its promising application in real-time optimization of
network configurations.

Index Terms— Network modeling, network performance infer-
ence, graph neural networks.

I. INTRODUCTION

WITH the rapid growth of network traffic, operators
continually strive to improve network performance to

meet the service level agreements for various network services.

Manuscript received 23 February 2023; revised 21 August 2023 and 28
September 2023; accepted 27 October 2023; approved by IEEE/ACM TRANS-
ACTIONS ON NETWORKING Editor J. S. Sun. Date of publication 7 November
2023; date of current version 18 April 2024. This work was supported in part
by NSFC Project of China under Grant 62132009 and Grant 62221003; and in
part by Tsinghua University-China Mobile Communications Group Company
Ltd., Joint Institute. An earlier version of this paper was presented in part at
the IEEE INFOCOM 2022 [DOI: 10.1109/INFOCOM48880.2022.9796726].
(Corresponding author: Yong Cui.)

Sijiang Huang, Yunze Wei, Lingfeng Peng, Mowei Wang, Linbo Hui,
and Yong Cui are with the Department of Computer Science and
Technology, Tsinghua University, Beijing 100084, China (e-mail:
cuiyong@tsinghua.edu.cn).

Peng Liu and Zongpeng Du are with the China Mobile Research Institute,
Beijing 100032, China.

Zhenhua Liu is with Huawei Technologies Company Ltd., Beijing 100085,
China.

Digital Object Identifier 10.1109/TNET.2023.3329357

To achieve this goal, practitioners often construct network
models to provide guidance for network planning, operation,
and optimization. A network model is tasked to predict how
the network performance metrics (e.g., throughput, delay)
change for various hypothetical “what-if” scenarios [1], such
as changes to traffic conditions and re-configurations of net-
work devices.

Typically, network models can apply to the following two
kinds of scenarios (§II-A). (i) For online performance mon-
itoring, a fast network model can reduce the monitoring
overhead by inferring quality of service (QoS) metrics directly
from traffic statistics in real-time without relying on high-
cost QoS measurements (e.g., probe delay for each path [2]).
(ii) For offline network planning, an accurate network model
can facilitate the design and optimization process by pro-
viding operators with predicted performance metrics under
different network configurations, even if the network has yet
been physically built. Benefiting from the development of
deep learning, researchers have recently utilized Deep Rein-
forcement Learning (DRL) techniques to effectively optimize
network performance [3], [4]. However, the aforementioned
methods may perform unreliable trial-and-error explorations
in real networks, potentially disrupting existing services and
causing intolerable performance degradation. To avoid the
impact on the performance of real networks, an accurate and
real-time network model can serve as a secure environment for
network optimization, enabling new methods including DRL.

In this context, much effort has been devoted to developing
rapid and precise network performance models with acceptable
costs. Traditional network modeling methods either use ana-
lytic models with simplified assumptions (e.g., queuing theory,
network calculus [5]) or use a network simulator to produce
all the packet-level events (e.g., NS3 [6]). The assumptions
used in the former may not be valid in real networks and will
lead to inaccurate results, while the high computational costs
of the latter make it infeasible to use in real-time.

With recent advances, deep neural networks show superior
performance on complex data modeling directly from raw
data [7], [8], [9], [10], which is promising for building
lightweight yet accurate network models. Previous learning-
based attempts [11], [12], [13], [14] have great successes
in their focuses. For example, Deep-Q [11] can produce
accurate inferences on path-level delay distributions, while
RouteNet [12] successfully makes accurate path-level perfor-
mance estimations and generalizes to unseen topologies and
routing schemes.

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:54:41 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5732-7459
https://orcid.org/0000-0001-9085-2247
https://orcid.org/0000-0002-2841-2002
https://orcid.org/0000-0002-5171-739X

1754 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

TABLE I
COMPARISON OF EXISTING SCHEMES ON THE ACHIEVED REQUIREMENTS

However, state-of-the-art learning-based proposals [11],
[12], [13], [14] have yet to fulfill their high expectations and
still fall short of satisfying the requirements of expressiveness
and granularity (§II-B). In most scenarios, the network per-
formance is influenced by not only the traffic conditions but
also many network characteristics of how real networks oper-
ate, in particular the configurations at different levels, such as
local configurations of network devices (e.g., the buffer size of
switches) and network-wide (i.e., global) configurations (e.g.,
routing schemes). In order to obtain accurate predictions, the
network model must be expressive enough to describe all the
factors above and provide “knobs” to adjust the corresponding
features to support the evaluation in “what-if” scenarios.

Furthermore, the prediction granularity of the network
model should be as fine as possible. From the spatial view, the
network model is much desired to provide flow-level modeling
ability, rather than coarse-grained path-level prediction, so that
concerned services can be managed delicately, particularly in
data center networks (DCN) [15].

From the temporal perspective, network operators are
generally more interested in transient network performance
anomalies (e.g., throughput drop-offs and delay spikes) [16],
which can typically only be detected by continuous per-
formance monitoring over time. The high-cost nature of
performance monitoring calls for a general network modeling
framework that is expressive enough to model a wide range of
network configurations and can provide fine-grained (i.e., flow-
level and time-series) predictions. A comparison of existing
schemes on the achieved requirements is listed in Table I.

In this paper, we propose xNet, a data-driven network
modeling framework that simultaneously supports network
configuration modeling and flow-level time-series prediction.
Our high-level design goal is to provide a general approach
to building the network models so that different network
characteristics can be properly modeled and generalized in a
unified way. xNet combines the advantages of deep learning
and neural networks to gain the potential benefits of accuracy
and speed by learning directly from the raw data. Unlike
the previous proposals, xNet is not a dedicated network
model designed for specific network scenarios with constraint
considerations. On the contrary, xNet provides a basic network
model (§III) that can be configured and instantiated to model
a variety of network scenarios with different focuses (§IV).
xNet proposes the following innovative designs to meet the
requirements of expressiveness and granularity.

Relation graph abstraction with configurable GNN: To
achieve expressiveness, xNet leverages graph neural networks
(GNN) [17] to model the intricate relationships among various

network entities (e.g., switch and router) and different con-
figurations (e.g., ECN and buffer size). GNNs carry strong
relational inductive bias and therefore inherently support rela-
tional reasoning and combinatorial generalization [18]. Note
that the reason for using GNN does not stem from the
fact that the computer network topology can be represented
visually as a graph, but rather comes from its ability to
model relationships that can express the relationships between
different network entities and attributes.

Specifically, we represent the networking system as a
relation graph. The graph’s nodes represent network enti-
ties with their own configurations, and the graph’s edges
reflect the relations between nodes. The domain knowledge
of the relationship between configurations can be embedded
by configuring the edge connections (§III-A). The interactions
are approximated by learned message-passing among nodes.
During learning, the knowledge about interaction is encoded
in the GNN’s update function. Learned knowledge is shared
across the same types of entities in the system, which supports
generalization to different network systems composed of the
same types of entities and configurations (§III-B).

State transition learning: To enable flow-level time-series
prediction, xNet leverages the recurrent structure of the GNN
model to learn the state transition function between discrete
time steps. The model maintains the state of each flow and
updates it with the transition function. The model can be
trained with one-step supervision of the difference between
states in adjacent time steps. After training, xNet can roll it
out step by step to obtain the full prediction trajectory (§III-C).

To demonstrate the effectiveness (i.e., accuracy and speed)
of our framework, we implement xNet and instantiate it for
three use cases (§IV) with customization. Each case focuses on
different properties of its target scenario. We also dive deeply
into xNet’s long-term performance, statistical and ranking
accuracy, and its performance in special circumstances to
demonstrate its practice use (§V). The main results are listed
below.

• For temporal QoS inference, xNet can make accurate
time-series predictions of path-level latency under unseen
queue-level configurations in a DCN scenario with an
average accuracy of 93%.

• For flow completion time (FCT) prediction, xNet can
accurately predict the FCT in DCN scenarios with a
Pearson correlation of ∼0.9.

• For steady-state QoS inference, xNet slightly outper-
forms domain-specific approach in modeling path-level
delay/jitter in wide area network (WAN) scenario.

• Compared with the conventional packet-level simulator,
xNet achieves over two orders of magnitude of speedup
in an FCT prediction scenario with thousands of flows.
xNet can be used to predict longer scenarios without
evident accumulation of errors, accurately rank different
network parameters by their performance, and maintain
considerable performance under previously unseen many-
to-one incast traffic.

To the best of our knowledge, xNet is the first data-driven
network modeling framework that simultaneously supports

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:54:41 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: xNet: MODELING NETWORK PERFORMANCE WITH GRAPH NEURAL NETWORKS 1755

network configuration modeling and flow-level time-series pre-
diction. In summary, we make the following key contributions:
1) A system abstraction approach and a configurable GNN
block enabling expressive network modeling (§III-A∼III-B);
2) A state transition model enabling fine-grained performance
prediction (§III-C); 3) The implementation and instantiation
of xNet based on three use cases of different metrics and
scenarios. (§IV).

II. BACKGROUND AND MOTIVATION

In this section, we first introduce the background of network
modeling and the related work (§II-A). Then, we motivate
the design of xNet by analyzing the requirements of network
models and the challenges behind them (§II-B).

A. Background and Related Work

Network Modeling. Network modeling is a critical part of
efficient management spanning the entire network life cycle,
including planning, operation, and optimization, especially in
the context of the future self-driving network [19], [20] or
Digital Twin Network paradigm [21]. The role of the network
model is to understand the complex relationships between the
network performance metrics (e.g., delay, utilization, FCT)
and the network characteristics (e.g., topology, traffic, con-
figurations). Once constructed, it can facilitate offline network
planning with performance predictions of “what-if” scenarios
or mitigate the cost of online performance monitoring with
real-time inference.

Network modeling with deep learning. Recently, network
modeling with deep learning has been discussed in the lit-
erature [19], [22] but with few attempts. Two representative
works have close focus to ours. First, Deep-Q [11] uses the
deep generative models to infer the network QoS with the
traffic matrix as input. However, the authors only consider the
influence of traffic while ignoring other factors that may affect
the network QoS. To deal with this problem, RouteNet [12]
leverages graph neural networks to understand the complex
relationship between topology, routing, and input traffic to
produce accurate estimates of the per-source/destination pair
mean delay and jitter. In this way, RouteNet can generalize to
topologies and routing schemes not seen during training.

Although these solutions have great success in their focus,
they still fall short of meeting the operators’ requirements
for expressiveness and granularity (Tab. I). In the following,
we will analyze these requirements and the challenges they
pose.

B. Requirements and Challenges of Network Models

Expressiveness: To produce accurate predictions, the net-
work model must be expressive enough to encompass as
many related influence factors relevant to the network perfor-
mance metrics as possible. Among these factors, the network
configurations can span a wide range of different operating
levels from the end-host to in-network devices, e.g., congestion
control at the host level, scheduling policies and ECN marking
thresholds [23] at the switch queue level, bandwidth and

propagation delay at the link level, buffer management policy
in shared memory switches [24] at the device level, and the
topology and routing scheme at the global level, all of which
have complex interactions with each other. As for existing
solutions, RouteNet only considers global configurations while
Deep-Q totally ignores these influence factors.

Challenge: The key challenge behind the requirement is
the large state space, i.e., the number of potential scenarios
the network model faces. This is because networking systems
often consist of tens to hundreds of network nodes, and each
node may contain multiple configurations, which results in a
combinatorial explosion of potential states. A naive solution
to building the network model is to construct a large neural
network that takes a flat feature vector containing all the
configuration information as input. However, this approach
cannot scale to process information from an arbitrary number
of nodes and configurations since the input size of the neural
network is fixed. Achieving expressiveness not only increases
the demands on the hard-to-collect datasets but also makes
neural networks difficult to train and generalize.

Granularity: In different network scenarios, the granu-
larity of the operators’ focus can be quite different. In the
wide-area network (WAN) scenario, operators mainly focus
on the long-term average performance of aggregated traffic,
where path-level steady-state modeling is often sufficient to
guide the planning process (e.g., traffic engineering). However,
fine-grained network performance observation is the constant
pursuit of network operators and cloud providers to pro-
vide precise information about when and which flow gets
disturbed [16]. This requires the network model to support
flow-level time-series performance predictions. In this con-
text, RouteNet fails since it can only estimate steady-state
performance metrics at the path-level, while Deep-Q only
supports time-series QoS inference but falls short in flow-level
prediction.

Challenge: The flow transmission behavior, unlike the
aggregated traffic, may experience a cascade effect since it
is typically governed by some control loops (e.g., congestion
control). Once the control-related configurations (e.g., ECN
threshold, queue buffer size) change during the flow transfers,
the resulting traffic measurements of flows will dramatically
vary, and thus the afore-measured traffic status cannot reflect
the changing results. Therefore, flow-level prediction could be
more difficult than QoS inference from traffic measurements.
The network model needs to take the flow demands rather than
the traffic measurements as input to predict flow-level perfor-
mance (e.g., flow completion time) in “what-if” scenarios.

III. DESIGN

xNet meets the two requirements with a single framework
and can be instantiated to model various network scenarios.
Fig. 1 presents an overview of our xNet framework. The
typical workflow of xNet is summarized as follows.
• Prior to modeling, the operator needs to determine the

concerned network configurations and modeling granu-
larity based on the target network problem.

• According to the domain knowledge provided by the
network expert, xNet abstracts the network system into

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:54:41 UTC from IEEE Xplore. Restrictions apply.

1756 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

Fig. 1. xNet overview.

a relation graph, representing the complex relationship
between different network entities (§III-A).

• xNet uses a configurable GNN block (Networking Graph
Network, NGN) to construct the network model and
determines the form of the aggregation functions based
on the properties of the relationships (§III-B). The afore-
mentioned two steps are related to the expressiveness of
the model (i.e., configuration modeling).

• xNet uses a recurrent form of the GNN to model transi-
tions in network states by learning the difference between
states at consecutive time steps (§III-C). This step is
related to the modeling granularity (i.e., time series
modeling).

• Finally, the model is trained on collected data (§III-D)
and then can be used for performance inference.

A. Networking System as a Relation Graph

In xNet, we represent the networking system as a heteroge-
neous relation graph to provide a unified interface to model
various network configurations and the intricate relationships
between them. We map the network entities relevant to perfor-
mance as graph nodes with associated features. Graph edges
connect nodes that are considered to be directly related. Note
that although one could build the graph with a single type
of node and use categorical features (e.g., one-hot vector) to
represent distinct entities, using such a scheme would require
the update function (§III-B) of the single node must learn to
model various kinds of interactions between entities, which
not only increases the burden of training, but also limits the
scalability of the GNN model.

The heterogeneous nodes represent various network entities
with their own properties or configurations as the features.
There are two kinds of nodes in our graph. The physical
nodes represent the concrete network entities that have local
configurations (e.g., switches with buffer size). The virtual
nodes represent performance-related entities (e.g., flow, path),
to which the final performance metrics (e.g., FCT, path delay)
can be associated within the graph. The edges reflect the
relationships between entities and can be utilized to embed
domain knowledge. For example, when the queue scheduling
policy is activated, the queue node can connect to its port but
does not need to connect to other ports because they are not
directly correlated. Similarly, the edges can be used to model
the global configurations (e.g., topology, routing scheme). The
path node, for instance, can connect to all of the queue nodes
it passes through.

In the following, we take FCT prediction in DCNs as an
example to illustrate how xNet builds the graph. To fully
demonstrate the expressiveness of xNet, we take as many
configurations that we can think of in this scenario into
account, even though some of which are not always required.
Once the graph is built, xNet can use it to create the network
model with GNN(§III-B).

A DCN example. As shown in Fig. 2(a), we consider a data
center network with a leaf-spine topology. Within each switch,
the buffer is dynamically shared among all ports [24]. On each
port, queues are managed by various scheduling policies (e.g.,
strict priority, weighted round robin). Four flows are ready
to be transmitted. These flows are congestion controlled with
DCTCP [23] at the end-host server, therefore the ECN is
enabled at each switch queue. The goal of the network model
is to predict the flow completion time and path delay given
the different configurations. We assume the path of each flow
is known to the network model.

The graph abstraction of this DCN is shown in Fig. 2(b).
To comprehensively model the network characteristics at dif-
ferent levels, we use five types of nodes, including switch S =
{si}, port (link) L = {li}, queue Q = {qi}, path P = {pi},
and flow F = {fi}. To model the local relationships incurred
by local configurations, we connect each node to other nodes
that may have a direct impact on it (black edges). Specifically,
the queue node Q, which has the features ECN threshold
and priority weight, is linked to its port node L, which has
the feature scheduling policy, because the scheduling policy
controls the available bandwidth of queues. The port node
P is connected to its switch node S whose feature contains
the control factor α of dynamic buffer management policies,
as the buffer management policy operates at the port level.
Additionally, the flow node F is connected to the path node
P it travels through.

As a result, the local relationships can be represented
as several independent tree-like structures (shaded blocks)
without crossing edges. To model the global relationships
(i.e., routing), the path nodes P are connected with the queue
nodes Q they traverse (colored edges). These edges connect
different local trees, ensuring graph connectivity. Note that it
is not necessary to instantiate all of the physical nodes when
constructing a specific graph because some of them may have
no effect on the desired performance, e.g., not all devices are
traversed by flows.

B. Message-Passing on the Heterogeneous Graph

In xNet, we use Networking Graph Networks (NGN) as
the basic building block for our network model, which is a
customization of graph networks [18]. As shown in Fig.3, the
NGN block is defined as “graph-to-graph” modules with het-
erogeneous nodes. The NGN block takes an attributed graph
as input and, after a series of message-passing procedures,
outputs another graph with changed attributes. These attributes
are the features of nodes, expressed in fixed-length tensors.
This block can also be used in recurrent forms (§III-C).

A single feedforward NGN pass can be viewed as a single
step of message-passing on the graph [7]. Typically, NGN first
performs global updates, and then nodes in each tree structure

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:54:41 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: xNet: MODELING NETWORK PERFORMANCE WITH GRAPH NEURAL NETWORKS 1757

Fig. 2. A DCN example for graph abstraction: the target network environments (Fig. 2(a)) can be abstracted with a heterogeneous relation graph (Fig. 2(b)).

Fig. 3. Networking Graph Network block.

(see Fig. 2(b)) conduct the local updates independently. Cir-
cular dependencies among different update operations can be
resolved with multiple rounds of message passing [17].

In each round of message passing, each node x of type X
aggregates the messages from its neighbors N(x) and updates
its internal states according to a configurable function ρX .
An NGN block comprises several configurable functions, each
consisting of three types of sub-functions: the aggregation
function, the conversion function, and the update function.
These functions can be implemented with standard neural
networks and shared among nodes of the same type.

We use the aforementioned DCN scenario as an example,
as shown in Algorithm 1. Firstly, the node x gathers the
messages from its neighbors and aggregates those of the same
type with the corresponding aggregation function. Aggregation
can take a simple form such as summation that models the
neighbors’ permutation-invariant property (e.g., ports as to a
switch), or some complex functions like Recurrent Neural Net-
work (RNN) for sequential dependency (e.g., queues traversed
by the path).

Then, to deal with heterogeneous nodes, the aggregated
messages of type Y are transformed with a type-to-type
conversion function ψY→X before being put into the update
function. By doing this, information from heterogeneous nodes
can be mapped into the same hidden space that corresponds
to the target type of node, so that they can be operated in
a unified way in the update function without limiting the
modeling capability of GNN.

Finally, the node takes the transformed messages and its
own state in the last round as input to update the state with
the update function ϕX . After the given rounds of message

Algorithm 1 Networking Graph Network, NGN
Input: Graph, G = (S,L,Q, P, F)
// Global relationship update
for each path pi in P do

Aggregate flows f̂ = Σfj∈N(pi)fj

Aggregate queues q̂ = RNNqj∈N(pi)(qj)
Update p∗i = ϕP (pi, ψ

F→P (f̂), ψQ→P (q̂))
// Local relationship update
for each flow fi in F do

Update f∗i = ϕF (fi, ψ
P→F (p∗j)), p

∗
j ∈ N(fi)

for each queue qi in Q do
Aggregate paths p̂ = Σp∗j∈N(qi)p

∗
j

Update
q∗i = ϕQ(qi, ψL→Q(lj), ψP→Q(p̂)), lj ∈ N(qi)

for each link li in L do
Aggregate queues q̂ = Σq∗j∈N(li)q

∗
j

Update
l∗i = ϕL(Li, ψ

S→L(sj), ψQ→L(q̂)), sj ∈ N(li)
for each switch si in S do

Update s∗i = ϕS(si, ψ
L→S(l∗j)), l∗j ∈ N(si)

Output: Graph, G∗ = (S∗, L∗, Q∗, P ∗, F ∗)

passing, we can use a readout function to predict the final
performance metric using as input the hidden state of related
nodes (e.g., path node as to end-to-end delay).

C. State Transition Learning

The network models are required to support fine-grained
prediction at a short time scale and transient state prediction
(e.g., flow state). To achieve this, xNet uses the recurrent form
of the NGN blocks to learn to predict future states from the
present ones. It operates on one time-step and has the “encode-
process-decode” structure. These three components are NGN
blocks with the same graph but different neural network
parameters. They process the input feature sequentially, where
the output of the first block becomes the input of the second.
Fig. 4 depicts the structure of xNet’s state transition model.

Encoder. The “encoder” NGN block embeds the input
state Gt

in into a latent graph by encoding different nodes
independently. It ignores the relationship between nodes and
does not perform message passing. After encoding, the input
state of each node is transformed into a fixed-dimension vector.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:54:41 UTC from IEEE Xplore. Restrictions apply.

1758 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

Fig. 4. State transition model of xNet.

Processor. The “processor” NGN block performs M rounds
of message-passing steps. The input to the processor is the
concatenation of the encoder’s output and the previous output
of the processor (i.e., the hidden state Gt−1

hidden).
Decoder. The “decoder” NGN block, i.e., the readout func-

tion, extracts the dynamic information of the final hidden graph
by independently decoding different nodes. It also ignores the
relationship between nodes as the encoder. After decoding, the
output state Gt

out contains both the current performance metric
and the state delta ∆ used to update the next-step state.

xNet in this form can be treated as a learnable network
simulator Θ, which computes the dynamics information with
a parameterized function approximator. In each step, it takes
the current (potentially historical) state Gt of the networking
system and tries to predict the current performance and the
delta ∆ between the current and next state. Then the next state
can be determined using this state difference. To summarize,
it behaves as Gt+1 = Θ(Gt). The forward procedure of this
state transition model is shown in Algorithm 2.

As a data-driven model, xNet supports state transition
modeling given different network characteristics, which should
be selected based on their impact on network performance as
well as whether obtaining such indicators is within the mea-
surement capability of the system. xNet does not have stringent
requirements on which input characteristics are mandatory,
instead, it just makes the best with what it can get. On the
other hand, the output characteristics are expected to be
the network state information or quality of service predicted
by the model. It is worth noting that the input and output
characteristics vary in different scenarios. We distinguish the
static and dynamic characteristics of the network system, and
express them as different graphs. The static graph Gs contains
the static system configurations as inputs, including physical
node configurations (e.g., priority of queue, buffer size of
switch), and virtual node configurations (e.g., flow size, start
time). On the other hand, the dynamic graph Gd contains the
temporary state of the system, including physical node states
(e.g., link throughput, queue length), and virtual node states
(e.g., remaining size and lifetime of the flow, the end-to-end
delay of the path). Additionally, when considering the dynamic
configurations (e.g., time-varying ECN threshold), the actions
taken (i.e., new configuration) should be put into the dynamic
graph and inputted at each time step.

D. Training

We train our model by supervising the per-node output
features produced by the decoder, using an L2 loss between

Algorithm 2 NGN Forward Prediction Algorithm
Input: trained NGNcore, NGNenc and NGNdec.
Input: dynamic graph Gt

d at the current time step.
Input: static graph Gs and hidden state Gt−1

h .
Input: maximum message-passing number M .
Build input graph Gin = concat(Gs, G

t
d)

Obtain encoded input graph Genc = NGNenc(Gin)
Obtain graph hidden state Gt−1

h if not exist then
Obtain EMPTY graph hidden state

Obtain graph G0 = concat(Gt−1
h , Genc)

for i = 1 : M do
Obtain updated graph Gi = NGNcore(Gi−1)

Obtain graph after message-passing GM

Update graph hidden state Gt
h = GM

Obtain decoded output graph Gout = NGNdec(GM)
Obtain predicted delta of dynamic nodes
∆Nd = Gout.nodes

Obtain next graph Gt+1
d by updating N t

d with ∆Nd

Output: next dynamic graph Gt+1
d .

the predicted value and the corresponding ground truth values.
To generate a long-range rollout trajectory, we iteratively feed
updated absolute state predictions back into the model as input.
As data pre and post-processing steps, we normalized the
inputs and outputs to the NGN model.

IV. EVALUATION WITH USE CASES

xNet can be instantiated to model various network scenarios
with different concerns. In this section, we apply xNet to three
concrete use cases to show its modeling capability and wide
application scope. Note that the network models used for each
case are different, and are trained and evaluated separately.
The key properties and requirements of the three use cases
are summarized in Table II.

A. Implementation

We implement xNet using Tensorflow [25] and the Graph
Nets library [26], where the components of the xNet frame-
work are implemented with standard deep learning building
blocks. Unless otherwise specified, all three network models
are built with the following specifications. The RNN used
in aggregation is a 1-layer GRU [27] with 64 neurons.
The conversion function is a 1-layer multi-layer perceptrons
(MLP). The update functions in NGN are all 3-layer MLP
with 64 neurons followed by layerNorm [28]. The activation
function is Leaky Relu [29]. We use the Adam [30] optimizer
to minimize the loss with a learning rate of 0.001. The
maximum message-passing number M is set to 3. The state
transition model of xNet works in a “dynamic” graph manner,
where the number of nodes (e.g., the number of flows) in the
graph can be different between time steps. We train our models
with an Nvidia RTX 3080 GPU.

B. Temporal QoS Inference in DCN

Task: This case intends to validate whether xNet can accu-
rately perform time-series inference and generalize to unseen

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:54:41 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: xNet: MODELING NETWORK PERFORMANCE WITH GRAPH NEURAL NETWORKS 1759

TABLE II
PROPERTIES AND REQUIREMENTS OF THREE USE CASES

Fig. 5. Results of temporal QoS inference in the DCN scenario.

configurations, reflecting the application of online performance
monitoring [11]. The network model is required to predict
the time-series evolution of path-level delays based on real-
time measurements of traffic volumes along a path, where the
configurations of traffic loads, queue buffer size, and ECN
marking threshold can be varied.

Experiment setup: We leverage the data generated by the
packet-level simulator NS3 [6] as the ground truth. We con-
sider a data center environment with the topology of a PoD
of a 4-port Fat-Tree [31], encompassing a total of 20 paths.
The capacity of each link is 10 Gbps, accompanied by a
10 µs propagation delay, resulting in a 40 µs maximum base
Round-Trip Time. In terms of traffic workloads, we use widely
accepted and publicly available data center traffic traces Web
Search [23] to generate flows following the all-to-all pattern.
We adjust the flow generation rates to set the average link loads
ranging from 20% to 80%. The flows are congestion controlled
by the host using DCTCP [23]. For switch configurations,
we only consider the buffer size and ECN marking threshold at
the queue level. The buffer sizes range from 0.05 to 0.5MB,
while the ECN marking thresholds range from 6 to 60KB.
Note that the ECN threshold here ranges from around 10% to
100% of the bandwidth-delay production, which is consistent
with the typical suggested configurations [23], [32], [33].

For each simulation, we randomly chose the three configu-
rations from a uniform distribution. We constrain the buffer
size to always exceed the ECN threshold. To measure the
path delay, we calculate the average packet delay along the
path during a predefined sampling interval which determines

the length of a time step. To show the necessity of temporal
performance modeling, we run the simulations with four
sampling intervals {0.2, 0.5, 1, 5} ms and train a dedicated
model for each interval. We choose these four typical intervals
to showcase xNet’s capability to model network scenarios of
different granularities that xNet can model transient network
behavior (with smaller sampling intervals) as well as steady
network states (with larger sampling intervals). We contend
that taking a smaller interval will result in too little data in
one interval and lead to a potential loss of statistical signifi-
cance. And since xNet has already achieved nearly impeccable
performance on the 5ms scenario, it’s not necessary to further
expand the interval.

For training/testing, we use a collection of samples from
30/10 simulations with more than 30000/10000 flows gener-
ated. With the different sampling intervals, the total number
of samples varies, ranging from around 176000/83000 to
7000/3300. Note that the flows and configuration combinations
generated in the testing are unseen by the model during the
training process. We report the mean absolute percentage error
(MAPE) between the predicted delay and the ground truth over
all paths as the evaluation metric.

Model: To build the graph, only the nodes in the type of
queue and path are required. The features on queue nodes
include the buffer size, ECN threshold, bandwidth, and link
propagation delay.1 The features on the path include the traffic

1Here, the queue and link are in a one-to-one correspondence, so we use
the single node with their configurations to represent them.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:54:41 UTC from IEEE Xplore. Restrictions apply.

1760 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

Fig. 6. Comparison with Deep-Q: MAPE of time-series path delay prediction with corresponding average link utilization. The sampling interval is 1ms and
prediction errors are calculated every 5ms.

volume and a one-hot vector that indicates the number of hops
on this path. To enable time-series prediction, we leverage the
state transition model to predict the path delay of the next step.
In particular, we use the state of the last five steps to predict
the next state, to improve accuracy. The training process with
a batch size of 64 takes about 2 hours.

Results: Fig. 5(a) shows the MAPE distribution of xNet’s
delay prediction in four experiments with different sampling
intervals. Firstly, xNet achieves high accuracy and maintains
the mean/50th percentile MAPE below 7%/5%. Even for the
tail performance, the error is limited to 20%, which shows
the potent generalization capability and robustness for worst-
case of xNet. Secondly, the prediction error systematically
decreases when the sampling interval becomes larger. This is
because the larger the sampling interval, the more stable the
network performance and thus the easier it is to predict. How-
ever, large sampling intervals would lose detailed information
about transient network performance.

To illustrate this, we present the time series of xNet’s
delay prediction alongside the ground truth of a randomly
selected path in Fig. 5(b). We can see that a delay spike of
approximately 100us (at around 22ms) in the resolution of a
0.2ms interval can only be found as 60us with a 5ms interval.
Therefore, fine-grained time-series performance prediction is
quite necessary, which confirms our motivation (§II-B). What’s
more, our model can predict the evolution of path delay over
time, which includes both the fluctuation and the steady-state.

To put the performance of xNet into perspective, we repro-
duce the Deep-Q [11] model for this scenario and compare the
performance of the CVAE-based generative model (Deep-Q)
and the GNN-based model (xNet). The original purpose of
Deep-Q is to predict the distribution of end-to-end delay,
as opposed to the targeted per-path delay in this scenario.
In order to directly compare these two models in this specific
case, we modify the Deep-Q model to output numerical
predictions of per-path delay and replace its loss function
from the Cinfer-loss to the Mean Square Error (MSE) loss.
The time series prediction error (MAPE) comparison of the
models is shown in Fig. 6, where the green dashed line shows
the average link utilization over time. The experimental results
indicate that xNet outperforms Deep-Q under various link load
conditions, and its advantage is more evident under higher
loads.

C. FCT Prediction in DCN

Task: With this use case, we aim to answer the question of
whether xNet can provide the flow-level time-series modeling

capabilities across various configurations. Unlike the previous
ones, in this case, the network model behaves like a simulator,
which needs to predict FCT by taking as input only the flow
descriptions without traffic measurements. Besides, it is also
required to predict the path-level delay and throughput.

Experiment setup: The experimental setup is the same as
that in §IV-B except that the sampling interval is set to 0.1 ms.
We calculate throughput by dividing the received bytes during
the interval by the interval length. For training/testing, we use
the same 30/10 traffic traces as in the previous case, and the
total number of samples is around 352000/166000. For the
evaluation metric, we report the MAPE of predicted per-step
performance metrics (i.e., delay and throughput) at both path
and flow levels, as well as FCT.

Model: Nodes of the queue, path, and flow types are
required to construct the graph. The features on flow nodes
include the flow size, start time, remaining size, and lifetime,
where the latter two are dynamic states. The model predicts
the FCT by predicting the received data volume between time
steps and updating the state of the remaining size and lifetime
on each step. Once the remaining size is below zero, the model
considers that the flow is complete and uses the lifetime as the
FCT prediction. A flow node exists in the graph only if the
flow is thought to be alive by the model. The model also takes
the per-step metrics at the path and flow level as dynamic states
for prediction. This model is trained by the supervision using
received bytes and per-step performance metrics at both path
and flow levels. We use the state of the preceding five steps
to infer the state of the next step. The training process with a
batch size of 256 takes about 48 hours.

Results: Firstly, we present the Cumulative Distribution
Function (CDF) of per-step performance predictions with
the corresponding ground truth. As shown in Fig. 7(a) and
Fig. 7(d), the distribution of predictions generated by xNet
closely aligns with the ground truth, especially for the delayed
predictions, which validates the xNet’s temporal prediction
ability. Note that since there are no traffic volume measure-
ments provided, so the network model needs to infer the traffic
conditions with the rollouts from scratch. To investigate the
accuracy of long rollouts, we present the CDF of FCT in
Fig. 7(c). We can find that the distribution of FCT predic-
tions well matches that of the ground truth with a Pearson
correlation of 0.9 (not shown), which confirms that xNet has
the ability to model flow dynamics.

Except for the distribution, to provide a faithful comparison,
we also report the MAPE of each metric shown in Fig. 7(d).
The errors of throughput and FCT are much higher than in

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:54:41 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: xNet: MODELING NETWORK PERFORMANCE WITH GRAPH NEURAL NETWORKS 1761

Fig. 7. Results of the FCT prediction scenario in DCN. xNet behaves as a learned simulator that iteratively predicts states of path and flow.

Fig. 8. Speedup of xNet compared to the NS3 simulator with different flow
numbers. For clarity, we normalize the time consumption of each scheme
against that of xNet with GPU.

the last case but still lie within an acceptable range such that
the 50th percentile error is all below 30%. This is because the
predictions are obtained from the step-by-step state transition,
where the errors will accumulate along with the rollout.
Finally, we present an example of rollout trajectories of five
randomly chosen paths in Fig. 7(e). As expected, the model
can make near-perfect predictions for traffic that lasts for a
short time since the model does not need to deal with the long-
time dependencies and cumulative errors. When the traffic lasts
for a longer time, the prediction becomes more inaccurate.
Nevertheless, xNet successfully achieves flow-level temporal
state prediction and can generalize to different configurations,
at least from the perspective of the overall distribution.

Inference performance: To show the efficiency of xNet,
we compare the time consumption of the NS3 simulator and
that of xNet to simulate the same traffic traces. We vary the
flow number in the simulation, ranging from 10 to 10,000
while maintaining the basic experiment setup unchanged. Note
that even with the same network topology, the number of flows
will influence not only the number of time steps but also the
number of nodes in the graph, thus impacting the per-step time
consumption. xNet and NS3 are tested on an Intel i9-10980XE
3.00GHz CPU with a single core. xNet is also tested on the
GPU. For inference, we set the batch size to 1.

As shown in Fig. 8, the time consumption of each scheme
is normalized by that of xNet with GPU, so that it can directly
reflect the relative speedups. As expected, xNet is much faster
than NS3 and achieves up to two orders of magnitude of
acceleration. This is because NS3 needs to simulate all the
packet-level events whose number will tremendously increase
with more flows. On the contrary, the network model of xNet
operates on the flow segments with a fixed time length and
can process multiple flows/paths in a single forward pass, thus
being less influenced by an increased number of flows.

To ascertain the reasons behind this speedup of xNet,
we measure the time for a single forward and backward
propagation of the xNet model. The results show that in the
most intricate DCN scenario for predicting FCT (§IV-C), the
average time taken for forward propagation of the model is
41ms and the backward propagation takes an average time

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:54:41 UTC from IEEE Xplore. Restrictions apply.

1762 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

of 102ms. Note that only forward propagation is needed
during the actual deployment of the model. Considering that
each inference of the model corresponds to a real-world time
interval, 0.1ms in this case, xNet requires approximately four
hundred seconds to perform FCT prediction for a scenario
involving one thousand flows (equivalent to a real-world time
of 1s). Moreover, in the case of §IV-B, where the model is
simpler and possesses fewer parameters, its inference speed
is even higher, achieving a range of 100us-1ms for forward
propagation and therefore satisfies the real-time prediction
speed requirements proposed in the §IV-B.

D. Steady-State QoS Inference in WAN

Task: This use case aims to verify that the xNet can function
in Wide Area Network (WAN) scenarios. We intend to show
that xNet can effectively model and generalize to both global
and local configurations, which is designed to reflect the usage
of offline network planning [11].

It is worth noting that there is a significant difference
between the topology of the WAN scenario and the data center
network scenario. Unlike the highly structured topologies
found in DCNs, such as Fat-Tree, the topology in WAN
is more arbitrary, which leads to wide fluctuations of node
neighbors, path length, and base value of metrics (such as
base delay of paths). Therefore, the WAN Scenario tests the
generalization ability of the model at the level of network
topology. In this use case, the xNet model predicts end-to-end
per source/destination mean delay and jitter at a steady state
in the WAN scenario and generalizes to multiple scheduling
policies and network topologies. We compare the performance
with the specifically-designed RouteNet model [12] [34],
demonstrating the generality and effectiveness of our general
xNet model in this special scenario.

Experiment setup: We use the public network modeling
dataset [35] generated by OMNET++ simulator [36]. The
training dataset contains samples simulated in the NSFNET
(14 nodes) and GEANT2 (24 nodes) network topologies,
while the test dataset is simulated in the RedIRIS (19 nodes)
topology. Each sample of the dataset includes the topology,
a routing matrix, a traffic matrix, and a performance matrix.
Each switch node is implemented with one of the following
scheduling policies, i.e., Strict Priority (SP), Weighted Fair
Queueing (WFQ), or Deficit Round Robin (DRR), with three
priority queues. The scheduling weights of WFQ and DRR are
chosen randomly according to four scenarios [35]. Each flow
may have 3 different Types of Services (ToS) associated with
one of the three priority queues. Particularly, all the packets
within the same path have the same ToS. Packets are generated
following a Poisson distribution on each flow. The traffic
matrix provides measurements of traffic-related information,
such as average bandwidth and packet generation at the level
of source-destination pairs. The performance matrix provides
performance measurements, such as average delay and jitter
on paths. All the measurements are relative to time units.
We use a variant of RouteNet [34] as the comparison baseline.
We use 400000/50000 samples for training/testing, and each
sample has more than 300 active paths. For the evaluation

metrics, we report both percentage error (PE) and absolute
percentage error (APE) of per-path performance metrics (i.e.,
delay and jitter) between the predicted value and the ground
truth. We also report mean absolute percentage error (MAPE)
under different traffic loads.

Model: To build the graph, the nodes to need have the type
of link (port), queue, and path. The features on link nodes
include the bandwidth and scheduling policy. The features
on queue nodes include the scheduling policy, scheduling
weights, and queue sizes. The features on path nodes include
the average bandwidth and packets generated in a time unit
and the ToS of flows on this path. Although this scenario does
not require temporal inference, we still leverage the encoder-
processor-decoder architecture of our state transition model for
better performance. The training process with a batch size of
16 takes about 12 hours.

Results: Firstly, we present the boxplot of absolute per-
centage error (APE) and the CDF of percentage error (PE).
As shown in Fig. 9(a), both xNet and RouteNet demonstrate
relatively low median APE of delay at around 10%. APEs
of jitter are much higher than delay, but still lie within
an acceptable range such that the median APE is below
20%. Fig. 9(b) also shows highly similar curves of CDF of
PE between xNet and RouteNet, indicating that xNet can
perform nearly the same (in the scenario of delay inference)
as RouteNet or a little bit better (in the scenario of jitter
inference).

To explore the performance of the model across varying
traffic loads, we divided the data into ten groups according
to the load rate of the bottleneck link of the path, as shown
in Fig. 9(c). Each point in the figure represents the relative
value of MAPE over corresponding traffic load (TL) range
([TL-5%,TL+5%)) with RouteNet as 100%. It can be seen that
xNet and RouteNet have similar performance under medium
and high load situations, and xNet outperforms RouteNet
significantly under low load situations (approximately 50% at
[0,10%) traffic load).

The experimental results show that our general model xNet
can provide similar or slightly improved performance than the
specific model RouteNet in the WAN scenario, which proves
the effectiveness of xNet in this scenario and demonstrates the
generalization ability of our model.

V. DEEP DIVE XNET

In addition to assessing accuracy across diverse use cases,
we also dive deeper into the practical dimensions of xNet,
including an exploration of its long-term performance and its
potential applicability in optimization scenarios (i.e., choosing
the best ECN setting). We begin by conducting experiments
to determine whether the state transition model of xNet
accumulates errors, followed by an analysis of the underlying
causes of the observed outcomes. Then, we investigate other
types of prediction accuracy of the model with clear practical
implications, including statistical and ranking accuracy that
supports downstream tasks such as configuration recommen-
dation. At the end of this section, we test how the xNet model
work under an unseen special situation, i.e., facing particular
traffic such as many-to-one incast.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:54:41 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: xNet: MODELING NETWORK PERFORMANCE WITH GRAPH NEURAL NETWORKS 1763

Fig. 9. Multiple metrics of steady-state QoS inference in a WAN scenario.

A. Long Term Performance
The state transition design of xNet allows for prediction at

a finer grain compared to existing “end-to-end” approaches.
However, this introduces a new concern related to accumula-
tive errors. As the model “rolls out”, there’s a potential for
prediction errors to accumulate and lead to “growing” errors
in FCT predictions. In this case, our objective is to verify
whether xNet can accurately simulate scenes over extended
periods of time.

Experiment setup: The experimental setup and used model
are the same as that in §IV-C. Note that the model trained
on “shorter” traces is directly used to predict longer traces
without retraining. For testing, we generate 3000 flows for
each scene to prolong the scenes, that is 30000 flows and more
than 263000 samples in total for the 10 test scenes. In each
scene, we equally divide the total simulation time (∼2s) into
10 periods, and for each period, we focus on those flows that
end during it and report the prediction errors.

Results: The results are shown in Fig. 10. All 10 periods
have similar MAPEs and the overall MAPE is close to the
level of the “shorter” test scene in Fig. 7(d), which indi-
cates that xNet has consistent performance in the previously
unseen long-term scenes. There is no evident increase in
FCT prediction errors over time which provides compelling
evidence that the state transition model of xNet remains
immune to cumulative error. This outcome can be attributed
to two factors. Firstly, xNet is free from systematic errors,
i.e., it does not constantly over/under-estimate certain network
states. And more importantly, the errors of network state
predictions cannot accumulate as they are often “reset” due
to the “on-off” nature of the network dynamics. Influenced by
traffic demands and congestion control, in common network
scenarios with moderate loads (<100%), the network states
are observed to empty from time to time, thus clearing out
cumulative errors. With these results, we show that xNet can be

Fig. 10. Long-term Accuracy of xNet.

used to predict scenes with arbitrary length without concerns
of error accumulation.

B. Revisiting Model Accuracy

Statistical prediction performance. Up until now, we have
adopted the Mean Absolute Percentage Error (MAPE) metric
as the primary metric for evaluating the model’s predictive
capabilities at the per-flow level. To make predictions at such
fine grain is inherently error-prone, even with considerable
cost. In this paper, we strive to make the best of the GNN-
based model to achieve a fairly good prediction performance
at a reasonable cost. However, in practical scenarios with more
specific goals, there might not be a stringent requirement for
fine-grained flow-level predictions. Instead, in some circum-
stances, we would prefer the statistical performance of a group
of flows (e.g., the average or the tail performance), which
allows the user to acquire a more comprehensive view of the
network performance rather than focusing on single flows.

The experimental setup and used model are identical to that
in §IV-C. We tasked the model with predicting FCT across ten
distinct scenarios with different traffic traces. We normalize the
FCT value with their corresponding flow size and compute the

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:54:41 UTC from IEEE Xplore. Restrictions apply.

1764 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

Fig. 11. Accuracy of xNet in other forms.

trace-level prediction accuracy of mean, median, and the 95th

percentile FCT within each scenario. As shown in Fig. 11(a),
the accuracy of trace-level prediction accuracy is evidently
better than that of flow-level prediction. Notably, xNet has a
∼ 20% error on tail performance prediction, which is quite
useful for many optimization tasks whose main focus is to
improve the tail latency of the network.

Ranking performance. As shown in §IV-C, xNet achieves
a median error of less than ∼30% when predicting FCT.
Notwithstanding its remarkable speed-up compared with tra-
ditional simulators, some might wonder whether a (really)
fast but (somewhat) inaccurate model has practical utility.
In this section, we further dig into the practical use of
xNet to show that an “inaccurate” model can be especially
helpful to downstream optimization tasks, parameter selection,
in particular. In this case, we use xNet to determine the best
ecn/buffer setting when other configurations are fixed. In other
words, given a series of different settings of the same scene,
we want to know whether xNet can rank their performance in
accordance with the ground truth and pick the best setting (s).

The experimental setup and used model are the same as
that in §IV-C. We rank a series of configurations by running
the same scene use those configurations independently and
sort them in ascending order by the mean FCT of small flows
(≤ 100KB). For testing, we range the traffic load from 10%
to 50% and enumerate all possible ecn/buffer settings when
other parameters are fixed. Particularly, when setting the ecn,
we set the buffer to 0.25MB and run simulations using ecn
values ranging from 10% to 90% of 60KB, using 10% as step
size. And when setting the buffer we set the ecn to 30KB and
varying buffer values from 10% to 90% of 0.5MB. We report
the rank-biased overlap (RBO) between the predicted rankings
and the ground truths generated by the simulator.

Fig. 11(b) illustrates the RBO between the xNet predictions
and the ground truths with different load settings. Remarkably,
xNet consistently achieves high ranking accuracy with the
worst RBO above 0.85, which means xNet possesses strong
performance isotonicity. It is worth mentioning that in all
scenes and settings, xNet successfully picks the setting which
achieves the best (smallest) FCT results. The ability to rank
different configurations with their performance, combined with
its remarkable order-of-magnitude speed-up, makes xNet a
promising tool for downstream parameter tuning tasks.

Fig. 12. Performance of xNet under incast traffic.

C. Performance Under Incast Traffic

As shown in §IV-C, xNet demonstrates promising perfor-
mance in predicting the FCT of flows following an all-to-all
pattern in DCN, which corresponds to the traffic pattern
encountered during the model’s training phase. While this
pattern is prevalent and widely used by researchers, one
would wonder how well the model performs under some
special situations whose traffic pattern is previously unseen
during model training. The efficacy of xNet in such intricate
scenarios will decisively influence its practical utility. With
a series of experiments, we aim to illustrate the adaptability
and extensibility of xNet across varied traffic patterns. Using
the performance of xNet under the all-to-all traffic pattern as
the Base, we extend our experiment to encompass additional
many-to-one incast traffic alongside the predominant all-to-
all communication. We refer to the former as the foreground
traffic and the latter as the background traffic. Since the model
is expected to have increased error facing previously unseen
foreground incast traffic, we also opt to fine-tune the model
with a small amount of data collected over this new hybrid
pattern and compare the results.

Experiment setup: For the new pattern, 90% of the flows
follow the all-to-all pattern, while the remaining 10% follow
a three-to-one incast pattern. The remaining configuration
settings remain the same as in §IV-C. For fine-tuning, we use
10 simulations with a total of 10000 flows generated, and we
train the model on this corpus for only 1 hour. We report the
MAPE between the truth and the prediction of xNet.

Results: Fig. 12 shows the MAPE of FCT between the xNet
predictions and the ground truths. On the base setting, xNet
achieves a median error of 23% which confirms the results
of §IV-C. Without fine-tuning, xNet demonstrates a median
error of 24% for background flows and 29% for foreground
flows. With one hour of fine-tuning, xNet yields a median
error of 23% and 24%, respectively, which is close to the
base results. The above results show the adaptivity of xNet to
new traffic patterns. When confronted with previously unseen
traffic patterns, xNet maintains a reasonable level of accuracy
without encountering significant degradation. With moderate
fine-tuning, we can apply the model to a previously unseen
scenario and expect comparable performance.

VI. DISCUSSION AND FUTURE WORK

In this section, we discuss the limitation and future research
directions of xNet.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:54:41 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: xNet: MODELING NETWORK PERFORMANCE WITH GRAPH NEURAL NETWORKS 1765

Data collection. As an application of deep neural networks,
the accuracy and generalization ability of the learning-based
network models highly depend on the quantity, quality, and
diversity of the training data. Operators can quickly collect
sufficient data that reflect the distribution of the real world with
the production networking systems. However, operators do
not frequently adjust their configurations on different network
elements, which leads to limited combinations of various
traffic patterns and different configurations in the training
dataset. In addition, in order to collect diverse training data,
it is often unrealistic to require operators to frequently change
configurations or build dedicated testbeds, because this will
lead to potential performance degradation or high costs.

In this context, leveraging the simulation data can be a good
alternative. However, it is well known that there is “simulation-
to-reality” gap between the simulated in-lab data and the
real-world ones. This obstacle stands before all the learning-
based network models that care about network configurations
including RouteNet [12], xNet, and potential future ones.
In our view, recent advances in transfer learning [37] and
few-shot learning [38] can be a cure. One can first train the
network model with plenty and diverse data from simulation
(may not be of high quality), and then transfer the model with
few but high-quality data from the real-world collection. The
assumption behind this approach is that the simulation and
real-world network systems follow the same basic principles,
that these principles can be learned from simulated data, and
the transfer process simply attempts to correct systemic errors.

One more thing that calls for further discussion is the
cost of data collection. To generate “labeled” data for the
model in §IV-C, we run the NS3 simulator for approximately
44 hours. At first glance, some might find it confusing that
xNet aims to accelerate network simulation by training with
data generated with time-consuming simulation. However,
we find that generating a certain amount of training data
with simulation can be a good bargain for the following
reasons. Firstly, of all the possible combinations of traffic
and parameters, the training data only covers an extremely
small portion. That means the model trained on such a small
portion of data actually provides its user with remarkable
generalizability, coupled with notable speedup. Secondly, data
collection can leverage the parallelization capabilities inherent
in modern multi-core servers, since the sampled inputs are
independent of each other, which means pre-collected data
could come at a lower time cost. Finally, as shown in §V-C,
xNet can be fine-tuned with a rather small amount of data,
which indicates that after the initial base model is trained, the
data collection cost when applying it to other scenarios would
become more and more acceptable.

Configurability. In principle, learning-based network mod-
els can only generalize within the distribution described by the
training data. This means existing network models can not be
used to evaluate the performance of new protocols or policies
unless they can be expressed by the combination of existing
configurations or policies that are considered by the network
model and the training dataset. In this context, the discrete-
event simulators are still necessary to be the first step used
to implement and do the proof test for the new proposals.

The learning-based model, in this situation, plays the role
of accelerator to support large-scale evaluation. Therefore,
the key to expanding the application scope of learning-based
network model is to improve the granularity and range of
configurability. xNet is designed to stand in this line of work.
For example, the range of configurable features is gradually
larger, i.e. traffic for Deep-Q, additional topology and routing
for RouteNet, and extra configurations for xNet.

Optimization. Learning-based network models can quickly
produce accurate evaluations of the network performance with
varying configurations, so they can be used to explore better
schemes to optimize traffic transmission. This optimization
procedure is often driven by some search-based methods (e.g.,
grid/random search). These methods first generate candidate
configurations and then evaluate them using the network model
until the predefined optimization objective is met. Indeed,
xNet can also be applied to this paradigm. What’s more, xNet
opens a new door for efficient sequential decision-making in
networking systems. The state transition model can be used to
predict the next state, thus enabling model-based control (e.g.,
model predictive control [39]) or model-based reinforcement
learning [40]. We leave this for our future work.

Scalability. Our solution provides an expressive approach
capable of modeling diverse network elements across various
levels. However, this will result in a larger graph with more
nodes (e.g. hundreds to thousands of devices and flows)
that require more computations to update, which could raise
concerns about scalability. From the modeling perspective,
to provide fine-grained performance prediction (e.g. at flow
level) and embed relational inductive bias from domain knowl-
edge, we think this is a reasonable and acceptable trade-off
between accuracy and efficiency. In the view of computation,
with the growth of web search and social networks [41], a lot
of graph computing engines [42], [43], [44] have been built
to support efficient computation on large-scale graphs (e.g.
millions to billions of nodes and edges [41]). As a result, our
graph is rather small compared to these huge graphs and thus
can be easily handled with these well-designed systems.

One appealing attribute of the used Graph Neural Network
is its inherent extendability. Graph neural networks have a
strong relational inductive bias that a GNN model mainly
learns the interactive relationship between nodes, regardless
of the scale of the network topology. Therefore, theoretically
speaking, the xNet model based on the graph neural network
does not limit the network size of the input, and the model
is inherently extendable. This property has been partially
confirmed by the experimental results in §V-C that the GNN-
based model remains effective in previously unseen scenarios.
However, GNN models are not a panacea and we wouldn’t
expect it can miraculously scale to completely new scenar-
ios or extremely large-scale topologies. Besides fine-tuning,
we are working on several other possibilities to improve model
extendability and hope to present them in the future.

VII. CONCLUSION

In this paper, we propose xNet, a GNN-based data-driven
network modeling framework. Our overarching goal is to pro-
vide a versatile approach to network modeling that enables the

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:54:41 UTC from IEEE Xplore. Restrictions apply.

1766 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

accurate description and consistent generalization of diverse
network properties. xNet represents the networking entities
and their configurations as nodes within a relation graph and
learns the relationship between them via message passing.
We implemented xNet, instantiated it into three use cases,
and explored some features of xNet in depth. The results
indicate that xNet can learn to efficiently generalize to various
networking scenarios while achieving up to a 100x speedup
over traditional packet-level simulator.

REFERENCES

[1] M. Tariq, A. Zeitoun, V. Valancius, N. Feamster, and M. Ammar,
“Answering what-if deployment and configuration questions with wise,”
in Proc. ACM SIGCOMM, 2008, pp. 99–110.

[2] IP-SLA. Accessed: Jan. 10, 2022. [Online]. Available: https://www.
cisco.com/c/en/us/td/docs/ios-xml/ios/ipsla/configuration/15-mt/sla-15-
mt-book/sla_icmp_echo.html

[3] Z. Xu et al., “Experience-driven networking: A deep reinforcement
learning based approach,” in Proc. IEEE Conf. Comput. Commun.,
Apr. 2018, pp. 1871–1879.

[4] P. Almasan, J. Suárez-Varela, K. Rusek, P. Barlet-Ros, and
A. Cabellos-Aparicio, “Deep reinforcement learning meets graph neu-
ral networks: Exploring a routing optimization use case,” 2019,
arXiv:1910.07421.

[5] F. Ciucu and J. Schmitt, “Perspectives on network calculus: No
free lunch, but still good value,” in Proc. ACM SIGCOMM, 2012,
pp. 311–322.

[6] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,”
in Modeling and Tools for Network Simulation. Cham, Switzerland:
Springer, 2010.

[7] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proc. Int. Conf.
Mach. Learn. (ICML), 2017, pp. 1263–1272.

[8] A. Sanchez-Gonzalez et al., “Graph networks as learnable physics
engines for inference and control,” in Proc. Int. Conf. Mach. Learn.
(ICML), 2018, pp. 4470–4479.

[9] T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. W. Battaglia,
“Learning mesh-based simulation with graph networks,” 2020,
arXiv:2010.03409.

[10] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec,
and P. Battaglia, “Learning to simulate complex physics with
graph networks,” in Proc. Int. Conf. Mach. Learn. (ICML), 2020,
pp. 8459–8468.

[11] S. Xiao, D. He, and Z. Gong, “Deep-Q: Traffic-driven QoS inference
using deep generative network,” in Proc. Workshop Netw. Meets AI ML,
2018, pp. 67–73.

[12] K. Rusek, J. Suárez-Varela, A. Mestres, P. Barlet-Ros, and A. Cabellos-
Aparicio, “Unveiling the potential of graph neural networks for network
modeling and optimization in SDN,” in Proc. ACM SOSR, 2019,
pp. 140–151.

[13] A. Mestres, E. Alarcón, Y. Ji, and A. Cabellos-Aparicio, “Understanding
the modeling of computer network delays using neural networks,” in
Proc. Workshop Big Data Anal. Mach. Learn. Data Commun. Netw.,
2018, pp. 46–52.

[14] M. Wang et al., “Neural network meets DCN: Traffic-driven topology
adaptation with deep learning,” ACM SIGMETRICS, vol. 2, no. 2,
pp. 1–25, 2018.

[15] N. Dukkipati and N. McKeown, “Why flow-completion time is the
right metric for congestion control,” in Proc. ACM SIGCOMM, 2006,
pp. 59–62.

[16] Y. Zhou et al., “Flow event telemetry on programmable data plane,” in
Proc. ACM SIGCOMM, 2020, pp. 76–89.

[17] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61–80, Jan. 2009.

[18] P. W. Battaglia et al., “Relational inductive biases, deep learning, and
graph networks,” 2018, arXiv:1806.01261.

[19] A. Mestres et al., “Knowledge-defined networking,” ACM SIGCOMM
Comput. Commun. Rev., vol. 47, no. 3, pp. 2–10, Sep. 2017.

[20] N. Feamster and J. Rexford, “Why (and how) networks should run
themselves,” 2017, arXiv:1710.11583.

[21] Concepts of Digital Twin Network. Accessed: Jan. 10, 2022. [Online].
Available: https://tools.ietf.org/html/draft-zhou-nmrg-digitaltwin-
network-concepts-06

[22] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang, “Machine learning
for networking: Workflow, advances and opportunities,” IEEE Netw.,
vol. 32, no. 2, pp. 92–99, Mar. 2018.

[23] M. Alizadeh et al., “Data center TCP (DCTCP),” in Proc. ACM
SIGCOMM, 2010, pp. 63–74.

[24] A. K. Choudhury and E. L. Hahne, “Dynamic queue length thresholds
for shared-memory packet switches,” IEEE/ACM Trans. Netw., vol. 6,
no. 2, pp. 130–140, Apr. 1998.

[25] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. USENIX OSDI, 2016, pp. 265–283.

[26] (2018). Graph Nets Library, Deepmind. Accessed: Jan. 10, 2022.
[Online]. Available: https://github.com/deepmind/graph_nets

[27] K. Cho et al., “Learning phrase representations using RNN
encoder–decoder for statistical machine translation,” 2014,
arXiv:1406.1078.

[28] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” 2016,
arXiv:1607.06450.

[29] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified
activations in convolutional network,” 2015, arXiv:1505.00853.

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[31] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63–74, Aug. 2008.

[32] W. Bai, S. Hu, K. Chen, K. Tan, and Y. Xiong, “One more config
is enough: Saving (DC)TCP for high-speed extremely shallow-buffered
datacenters,” IEEE/ACM Trans. Netw., vol. 29, no. 2, pp. 489–502,
Apr. 2021.

[33] M. Alizadeh, A. Javanmard, and B. Prabhakar, “Analysis of DCTCP:
Stability, convergence, and fairness,” ACM SIGMETRICS Perform. Eval.
Rev., vol. 39, no. 1, pp. 73–84, 2011.

[34] M. Ferriol-Galmés, J. Suárez-Varela, P. Barlet-Ros, and
A. Cabellos-Aparicio, “Applying graph-based deep learning to
realistic network scenarios,” 2020, arXiv:2010.06686.

[35] Network Modeling Datasets. Accessed: Jan. 19, 2023. [Online]. Avail-
able: https://github.com/BNN-UPC/NetworkModelingDatasets

[36] A. Varga, “OMNeT++,” in Modeling and Tools for Network Simulation.
Cham, Switzerland: Springer, 2010, pp. 35–59.

[37] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[38] Q. Sun, Y. Liu, T.-S. Chua, and B. Schiele, “Meta-transfer learning
for few-shot learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 403–412.

[39] E. C. Garcia, D. M. Prett, and M. Morari, “Model predictive con-
trol: Theory and practice—A survey,” Automatica, vol. 25, no. 3,
pp. 335–348, May 1989.

[40] A. S. Polydoros and L. Nalpantidis, “Survey of model-based reinforce-
ment learning: Applications on robotics,” J. Intell. Robot. Syst. Theory
Appl., vol. 86, no. 2, pp. 153–173, May 2017.

[41] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan,
“One trillion edges: Graph processing at Facebook-scale,” Proc. VLDB
Endowment, vol. 8, no. 12, pp. 1804–1815, 2015.

[42] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein, “Distributed GraphLab: A framework for machine
learning in the cloud,” 2012, arXiv:1204.6078.

[43] W. Xiao et al., “TuX2: Distributed graph computation for machine
learning,” in Proc. USENIX NSDI, 2017, pp. 669–682.

[44] H. Liu, S. Lu, X. Chen, and B. He, “G3 when graph neural networks
meet parallel graph processing systems on GPUs,” Proc. VLDB Endow-
ment, vol. 13, no. 12, pp. 2813–2816, 2020.

Sijiang Huang received the B.E. degree in infor-
mation engineering from the Beijing University
of Posts and Telecommunications, Beijing, China.
He is currently pursuing the Ph.D. degree with
the Department of Computer Science and Tech-
nology, Tsinghua University, Beijing. His current
research interests include data center networks and
programmable hardware.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:54:41 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: xNet: MODELING NETWORK PERFORMANCE WITH GRAPH NEURAL NETWORKS 1767

Yunze Wei received the B.E. degree from the School
of Computer Science and Technology, Huazhong
University of Science and Technology, Wuhan,
China. He is currently pursuing the Ph.D. degree
with the Department of Computer Science and Tech-
nology, Tsinghua University, Beijing, China. His
current research interests include machine learning
for network modeling and digital twin networks.

Lingfeng Peng is currently pursuing the B.E. degree
with the Department of Computer Science and Tech-
nology, Tsinghua University, Beijing, China. His
current research interests include data center net-
works and digital twin networks.

Mowei Wang received the bachelor’s degree in
communication engineering from the Beijing Uni-
versity of Posts and Telecommunications in
2017 and the Ph.D. degree in computer science and
technology from Tsinghua University in 2022. He is
currently a Researcher with Huawei Technologies
Company Ltd. His research interests include data-
center networks and data-driven networks.

Linbo Hui received the M.E. degree from the
Department of Computer Science and Technology,
Tsinghua University, Beijing, China, in 2022. His
research interests include machine learning for net-
work modeling.

Peng Liu received the master’s degree in computer
science and technology from Beijing Jiaotong Uni-
versity, Beijing, China, in 2017. He is currently with
the China Mobile Research Institute. His research
interests include computing force networks, deter-
ministic networks, and industrial internet.

Zongpeng Du received the B.E. degree in computer
science and technology from the Beijing Institute
of Technology in 2006 and the Ph.D. degree in
information and communication engineering from
the Beijing University of Posts and Telecommunica-
tions in 2012. He is currently working on the future
network at the China Mobile Research Institute. His
research interests include the future IP networks and
intelligent networks.

Zhenhua Liu received the B.E. degree in infor-
mation engineering from Xidian University, Xi’an,
China, in 1997. He is currently a Technology
Strategy Planning Expert with Huawei Technolo-
gies Company Ltd. He has rich experiences of
large software system, telecom equipment system
architecture, and development. His research interests
include autonomous driving networks and next gen-
eration mobile operating systems.

Yong Cui (Member, IEEE) received the B.E. and
Ph.D. degrees in computer science and engineering
from Tsinghua University, China, in 1999 and 2004,
respectively. He is currently a Full Professor with the
Computer Science Department, Tsinghua University.
His research interests include mobile cloud comput-
ing and network architecture. He served or serves on
the Editorial Boards for IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS, IEEE
TRANSACTIONS ON CLOUD COMPUTING, and the
IEEE INTERNET COMPUTING.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:54:41 UTC from IEEE Xplore. Restrictions apply.

