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ABSTRACT
The constantly evolving Distributed Denial of Service (DDoS) at-
tacks pose a significant threat to the cyber realm, which underscores
the importance of DDoS mitigation as a pivotal area of research.
While existing AI-driven approaches, including deep neural net-
works, show promise in detecting DDoS attacks, their inability to
elucidate prediction rationales and provide actionable mitigation
measures limits their practical utility. The advent of large language
models (LLMs) offers a novel avenue to overcome these limitations.
In this work, we introduce ShieldGPT, a comprehensive DDoS miti-
gation framework that harnesses the power of LLMs. ShieldGPT
comprises four components: attack detection, traffic representation,
domain-knowledge injection and role representation. To bridge the
gap between the natural language processing capabilities of LLMs
and the intricacies of network traffic, we develop a representation
scheme that captures both global and local traffic features. Fur-
thermore, we explore prompt engineering specific to the network
domain and design two prompt templates that leverage LLMs to pro-
duce traffic-specific, comprehensible explanations and mitigation
instructions. Our preliminary experiments and case studies validate
the effectiveness and applicability of ShieldGPT, demonstrating its
potential to enhance DDoS mitigation efforts with nuanced insights
and tailored strategies.
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1 INTRODUCTION
A Distributed Denial of Service (DDoS) attack disrupts a network,
service, website, or online platform by overwhelming it with exces-
sive internet traffic. These attacks significantly threaten the internet
community, impacting critical infrastructure, public safety, and na-
tional security. A recent report 1 reveals that the global frequency
of attacks in 2023 has escalated to 1.6 times that of 2022 and 1.8
times that of 2021, with the complexity of these attacks also on the
rise.

The escalating prevalence and complexity of DDoS attacks un-
derscore the urgent need for potent mitigation solutions. Numerous
AI-based approaches, includingmachine learning [3, 6, 15] and deep
learning [1, 2, 9], have been explored for DDoS attack detection.
Machine learning techniques detect attacks by analyzing manu-
ally selected features to classify the data, whereas deep learning
approaches autonomously extract features and perform classifica-
tion. Despite promising detection capabilities, current AI-driven
approaches to mitigating DDoS attacks face two key limitations: 1)
limited explainability, and 2) absence of mitigation instructions, im-
peding their practical application. Recently, large language models
(LLMs), exemplars of generative AI, have made significant strides
in natural language processing (NLP), garnering global attention.
Recent studies have demonstrated the application of LLMs in net-
working tasks, including network diagnosis [5, 19], network con-
figuration [14], as well as network management [10, 12].

Intuitively, LLMs hold the promise of being effective in DDoSmit-
igation. However, two key challenges must be addressed: 1) LLMs
are inherently designed for processing natural language text, so it is
crucial to represent heterogeneous information in network scenar-
ios, such as real-time binary traffic data and static domain-specific
textual information, in a way that LLMs can understand. 2) While
LLMs have strong general capabilities, for specific tasks, it is nec-
essary to inform the model of its role in preventing hallucination
issues and producing the desired outcomes.

To tackle these challenges, we introduce ShieldGPT, an LLM-
based framework designed for DDoS mitigation, comprising four
coremodules: attack detection, traffic representation, domain knowl-
edge injection and role representation. Specifically, through the
detection module, raw traffic will be tagged, with labels including
benign or specific types of DDoS attacks. Inspired by the way GPT-4
processes traffic data presented in either plain textual formats or
structured documents, we extract both global and local characteris-
tics from the raw traffic, which includes statistical characteristics
as well as selected content from the raw traffic. Upon identification
of the attack label, domain-knowledge injection is used to gather
pertinent information on DDoS attacks and mitigation devices.
1https://e.huawei.com/en/material/networking/security/
0c561b8fd2d342999cd402bcecf6d452
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Leveraging traffic characteristics, tags from the detection mod-
ule and domain knowledge, we carefully craft prompt templates
through role representation to enhance the LLMs’ ability to gener-
ate explanations for predictions and offer mitigation suggestions.
We implement a prototype system using GPT-4 as our backbone
LLM. Experimental results on public DDoS datasets validate our
framework’s proficiency in providing clear explanatory analyses
and practical mitigation guidance. We position ShieldGPT as a pio-
neering and significant advancement towards the development of
an autonomous DDoS mitigation system in the future.

In summary, we make the following contributions:
• We introduce a novel LLM-based DDoS mitigation framework
that leverages LLM for in-depth attack analysis and mitigation.
A prototype system has been implemented and evaluated.

• We design a representation scheme for network traffic, including
both global and local characteristics, tailored to meet the input
constraints of LLMs while retaining rich informational content.

• We create two specialized role-based prompt templates aimed at
facilitating the generation of explanatory analyses and actionable
mitigation instructions. These templates are designed to ensure
the LLM’s accurate task comprehension, mitigate potential hal-
lucination issues, and produce clear, detailed outputs.

2 MOTIVATION
Existing AI-based methods have shown excellent performance
in DDoS attack detection. Leveraging the advanced, pre-trained
transformer-based encoder, YaTC [18], as an example, we highlight
its efficacy in traffic classification through self-supervised learn-
ing, facilitating accurate DDoS detection with fine granularity. We
pre-train and fine-tune YaTC based on two public datasets depicted
in § 4.1. Both datasets are randomly divided into training and test
sets, each comprising 50% of the data. Evaluation results are listed
in Table 1. YaTC demonstrates excellent detection performance,
achieving an F1 score surpassing 95% across all 14 DDoS attacks
and attaining a 100% F1 score for LDAP and SYN attacks.

Table 1: Detection performance of YaTC

Dataset Attack # flow Precision Recall F1 Score

CIC-DoS2017

Benign 115,572 0.999 1.000 0.999
Goldeneye 443 0.991 0.988 0.989

Hulk 656 0.995 0.989 0.992
RUDY 538 0.992 0.974 0.983

Slowloris 1,027 0.998 0.994 0.996
Slowbody 155 0.973 0.954 0.964

Slowheaders 740 0.998 0.987 0.993
Slowread 1,103 1.000 0.992 0.996

CIC-DDoS2019

Benign 1,578 0.995 1.000 0.997
LDAP 36,052 1.000 1.000 1.000
MSSQL 621 0.992 0.998 0.995
NetBIOS 157 0.993 0.987 0.990
PortMap 341 0.964 0.941 0.952
SYN 14,560 1.000 1.000 1.000
UDP 15,759 0.999 0.999 0.999

UDP-Lag 517 0.965 0.959 0.962

However, the following two limitations hinder these AI-driven
models from more practical applications:
(1) Lack of explainability. Current models fall short in offer-

ing detailed explanations for their predictions, specifically in

delineating the rationale for identifying traffic as malicious.
While shallow models like decision trees or linear regression
can highlight influential traffic features through feature impor-
tance analysis, these features are manually curated, demanding
substantial human effort and potentially lacking comprehen-
siveness. This deficiency in explainability hinders the broader
adoption of existing AI models, often perceived as black boxes,
in industrial settings.

(2) Lack of mitigation instructions. Existing models, designed
primarily for classification or regression, lack the capability to
generate actionable mitigation instructions, such as Access Con-
trol List (ACL) configurations, for DDoS attacks. Moreover, the
capabilities, configuration methods, and commands accepted by
different attack mitigation devices differ significantly, posing
a challenge in generating tailored mitigation instructions for
each device.
These limitations render AI models efficient yet impractical and

unusable in real-world scenarios. The emergence of LLMs may
address these challenges, which motivates the research presented
in this work.

3 SHIELDGPT
3.1 Framework Overview
ShieldGPT has two primary objectives: 1) To improve the explain-
ability of black-box AI-based detection models, allowing network
managers to better understand current threats; 2) To establish the
groundwork for an autonomous DDoS mitigation system by cre-
ating actionable mitigation strategies, thus narrowing the divide
between advanced detection algorithms in academia and the labor-
intensivemitigation approaches common in the industry. To achieve
these goals and tackle the challenges outlined in § 2, as depicted in
Figure 1, ShieldGPT is structured around four core components: at-
tack detection, traffic representation, domain-knowledge injection
and role representation.

The flexible attack detection module serves to identify any
potential attacks through a DDoS classifier employing pre-defined
rules, machine learning, or deep learning techniques.

The traffic representation module is responsible for parsing
raw traffic traces, segmenting distinct flows, and converting each
flow into an appropriate textual representation suitable for process-
ing by LLMs. The detailed transformation process is discussed in
§ 3.2.

The domain-knowledge injection module furnishes back-
ground knowledge pertaining to a specific DDoS attack and mitiga-
tion device. This aids the LLM in understanding the mechanisms
of a DDoS attack and the functionalities of a mitigation device,
thereby reducing hallucinations and enhancing response accuracy.

The role representation module is employed to define con-
crete roles by filling pre-defined prompt templates and soliciting
responses from GPT-4 tailored to the input prompt. The prompt
templates for attack explanation and mitigation are detailed in
§ 3.3.1 and § 3.3.2, respectively.

From a comprehensive standpoint, the workflow of ShieldGPT
unfolds as follows: 1) The raw traffic underscores processing through
a flow-level DDoS classifier, which categorizes each flow into be-
nign or a specific type of DDoS attacks. 2) The raw traffic trace is
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Flows

[ Traffic Characteristics ]
Suppose you are an experienced cybersecurity expert, 
now you are given traffic characteristics of the [ Traffic 
Label ] attack.
[ Attack Description ]
Please analyse the above data and explain its attacking 
behaviors.  

[ Traffic Characteristics ]
Suppose you are at [ Device ], now you are given 
traffic characteristics of the [ Traffic Label ] attack.
[ Attack Description ]
Please propose some mitigation strategies to mitigate 
this attack. Note that your advice should be as specific 
as possible with detailed codes.

LLM

...
The payload of the packet indicates that the Content-Length 
is set to 4096 bytes, which is a large value. However, the 
actual packet size is only 417 bytes, which is much smaller 
than the declared Content-Length. 
This discrepancy suggests that the source IP is sending 
incomplete HTTP POST requests to the server. 
...
These characteristics are typical of a slow-body attack

1. TCP Intercept: Watch for TCP connections and limit 
the number of incomplete connections. 
ip tcp intercept list 100
ip tcp intercept connection-timeout 30
ip tcp intercept watch-list 100
ip tcp intercept max-incomplete high 1000 low 800
2. Connection Limiting
...

Explanation Prompt Template

DDoS Behavior Explanation DDoS Mitigation Strategies

(Ⅰ) Attack Detection

(Ⅱ) Traffic Representation

Total packets: 20
Total bytes: 2101
Average packet size: 105.05 (byte)
Average packet interval: 13.495 (s)
Flow completion time: 256.407 (s)
Source IP: 192.168.56.1
....
Protocol: TCP

Global Characteristics

P1 P2 PM...

Packet size :          417 (byte)
Timestamp:           1276344320.985239
TCP flags:              PA
TCP window size: 29
Payload:                 POST/drupal7/? q=contactHTTP/1.1 

\r\n Host:192.168.56.101... 
Local Characteristics

Benign

Hulk

Slowloris

Slowbody

...

Traffic Label

Slowread

DDoS 
Classifier

P3

Hulk Slowloris Slowbody...

Slowbody is a type of DoS attack  generated by 
Slowhttptest tool. It sends incomplete HTTP POST 

requests with a large Content-Length value to the server 
and keeps the connection open for as long as possible, 

which can exhaust the server's resources ...

Attack Descriptions

1

1

2

3
3

3

3

4 5

1 Attack Detection

2 Traffic 
Representation

3 Knowledge 
Injection

4 Attack Explanation

5 Attack Mitigation

Workflow
Mitigation Devices

Router ... IPS

an ordinary Cisco router 
that supports ....

(Ⅲ) Domain-Knowledge Injection

Mitigation Prompt Template

(IV) Role Representation

3

3

Raw Traffic

1

Figure 1: Overview of ShieldGPT framework

subsequently partitioned into individual flows, with each flow then
being transformed into a textual representation reflecting its traffic
characteristics. 3) External knowledge, comprising textual traffic
characteristics, traffic labels, attack descriptions, and mitigation de-
vice specifications, is integrated into predefined prompt templates.
4) Leveraging a meticulously crafted explanation prompt, GPT-4 is
employed to explain the attacking behaviors exhibited by a specific
flow. 5) Similarly, through a detailed input prompt, GPT-4 generates
actionable mitigation strategies for deployment on a designated
device to counter the identified attack.

3.2 Traffic Representation
Given a raw traffic trace, we segment it into different flows based
on their 5-tuple characteristics (Source IP, Source Port, Destination
IP, Destination Port, Protocol).

To enable the analysis of traffic behaviors and the generation of
mitigation instructions using Large Language Models (LLMs) like
GPT-4, which are designed to process textual inputs and cannot
directly handle raw traffic data, we introduce a novel method for
creating a comprehensive textual representation of each traffic
flow. This method integrates both global statistical characteristics
and local individual attributes. This approach is inspired by the
techniques utilized by GPT-4 in addressing tasks associated with
the detection of attack traffic.

When processing traffic features formatted in document struc-
tures like JSON or CSV, GPT-4 autonomously generates scripts to
parse these files, extracting and aggregating statistical metrics for
key features, including packet size and packet intervals, thereby

facilitating its decision-making process. This straightforward but
effective approach underpins our endeavor to gather analogous
global information systematically, as delineated in Table 2.

However, relying exclusively on statistical characteristics falls
short by neglecting vital local information. To address this limita-
tion, we undertake the serialization of individual traffic packets,
encapsulating key fields shown in Table 3. Considering the limited
context window of LLMs, we limit our extraction of local char-
acteristics to the first 𝑀 packets. These packets contain critical
information related to connection establishment and early interac-
tions, which are particularly vulnerable to DDoS attacks.

Table 2: Metrics for global flow characteristics

Type Features
Categorical Source IP, Source port, Destination IP,

Destination port, Protocol
Numerical Packet size(min, max, mean, std, sum),

Packet interval(min, max, mean, std,
sum), Packet count, Packet rate, Byte
rate
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Table 3: Metrics for local flow characteristics

Field Interpretation
Packet size The total number of bytes transmitted within a

single packet.
Timestamp For calculating the time interval between con-

secutive packet transmissions.
TCP flags Indicators such as SYN, ACK, and RST, that gov-

ern the initiation, control, and termination of
TCP connections.

TCP win-
dow size

The maximum number of bytes that the sender
is prepared to accept.

Payload The textual data pertaining to upper-layer pro-
tocols such as HTTP.

3.3 Role Representation
3.3.1 Attack Explanation. Leveraging prior knowledge of flow
characteristics and associated attack labels, our objective is to for-
mulate precise prompts that guide GPT-4 in analyzing attack be-
haviors and providing detailed explanations. We have empirically
identified strategies that improve response quality.

Initially, it is crucial to elucidate the operational mechanisms
of the attack. While GPT-4 possesses a foundational understand-
ing of cybersecurity principles and comprehends the operational
dynamics of various DDoS attacks, it is prone to generating inaccu-
rate interpretations. This vulnerability stems from its incomplete
internal knowledge or the use of non-standardized attack termi-
nology, potentially leading to misunderstandings of the specific
attack and introducing biases in its explanations. To tackle this chal-
lenge, we detail DDoS attack descriptions, exemplified in Figure 1,
elucidate their attack mechanisms and characteristic patterns, and
incorporate these descriptions into the LLM’s input prompt.

Furthermore, it has been observed that variations in variable𝑀
(representing the packet number of local characteristics) within the
range [5, 10] do not exert a significant influence on the response. To
maintain consistency with the detection module, which is designed
to process only the initial 5 packets as input, we opt to set𝑀 to 5.
Ultimately, the prompt template with three slots designed to elicit
detailed attack analyses is structured as follows:

ing of cybersecurity principles and comprehends the operational
dynamics of various DDoS attacks, it is prone to generating inaccu-
rate interpretations. This vulnerability stems from its incomplete
internal knowledge or the use of non-standardized attack termi-
nology, potentially leading to misunderstandings of the specific
attack and introducing biases in its explanations. To tackle this chal-
lenge, we detail DDoS attack descriptions, exemplified in Figure 1,
elucidate their attack mechanisms and characteristic patterns, and
incorporate these descriptions into the LLM’s input prompt.

Furthermore, it has been observed that variations in variable𝑀
(representing the packet number of local characteristics) within the
range [5, 10] do not exert a significant influence on the response. To
maintain consistency with the detection module, which is designed
to process only the initial 5 packets as input, we opt to set𝑀 to 5.
Ultimately, the prompt template with three slots designed to elicit
detailed attack analyses is structured as follows:

The prompt template for the explanation generation

{Traffic Characterisitcs}
Please role-play as a cybersecurity expert. You’ve gathered
traffic statistical characteristics above and the first 5 packets’
original information of the {Attack Description}.
You are required to analyze the traffic and explain why it is a
{Attack Name} attack step by step.
Please provide a professional yet easy-to-understand explana-
tion for attacking behaviors.

3.3.2 Attack Mitigation. A wide range of network devices and
security systems, including routers, firewalls, Intrusion Preven-
tion Systems (IPSs), and Content Delivery Networks (CDNs), are
equipped for DDoS mitigation. However, there is significant vari-
ability in the mitigation effectiveness and the commands supported
across different types of devices and manufacturers.

Fortunately, LLMs are capable of generating detailed and action-
able instructions if provided with relevant information about the
mitigation devices. Presently, our primary focus for DDoS attack
mitigation encompasses the Cisco router and Snort IPS.

Moreover, we have observed that GPT-4 exhibits a thorough
understanding of the functionalities available in Cisco IOS, Snort
or iptables, thereby alleviating the need for explicit specifications.
Consequently, the prompt template with four slots devised for
generating appropriate mitigation strategies is presented herein.
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generating appropriate mitigation strategies is presented herein.

The prompt template for mitigation strategy generation

{Traffic Characterisitcs}
The above are traffic statistical characteristics and the first 5
packets’ original data of the {Attack Description}.
Suppose you are at {Device}. Please propose some defense strate-
gies to mitigate this {Attack Name} attack.
Note that your advice should be as specific as possible, and
detailed configuration codes are preferred.

4 EVALUATION
4.1 Experiments Setup
We conduct experiments for ShieldGPT on two public datasets:
• CIC-DoS2017 [7]: This dataset contains 8 different application
layer DoS attack traces, totaling 4.6 GB in size. Following an-
notation based on destination IP address and time offset, it was
observed that traces for the ddossim attack were absent. Conse-
quently, only traces of the remaining 7 DoS attacks were utilized
for training and evaluation.

• CIC-DDoS2019 [16]: We utilize traffic traces from the testing day,
comprising 7 DDoS attacks with a total size of 29 GB. Since the
raw PCAP file is unlabeled, we annotate each flow based on the
corresponding CSV file and discard flows with conflicting labels.
Both datasets are randomly divided into training and test sets,

each comprising 50% of the data. We pre-train and fine-tune Shield-
GPT using the training set and then evaluate it on the test set.

The ShieldGPT prototype is implemented using Python, where
the detection module primarily relies on YaTC [18]. All experiments
are conducted on a Ubuntu 22.04 server equipped with CPU of
Intel(R) Xeon(R) Gold 6240C CPU @ 2.60GHz, GPU of NVIDIA
A100 (40GB × 4).

To evaluate the detection performance, we employ three metrics:
precision, which emphasizes the accuracy of positive predictions;
recall, which underscores the capacity to capture positive instances
among all actual positives; and the F1 score, which provides a
balanced measure of both precision and recall.
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4.2 Attack Behavior Explanation
Constructed upon the designed representation, our research find-
ings indicate that ShieldGPT proficiently elucidates the behaviors
of various DDoS attacks when provided with a well-defined de-
scription of the corresponding attack mechanism. Typically, when
analyzing attack behaviors, ShieldGPT adopts a multifaceted ap-
proach, considering key factors such as packet size, flow completion
time, TCP flags, packet rate, payload, etc.

Besides, we have conducted experiments with several parameters
of the prompt, including the number of packets provided, scenario
changes, and alterations in roles. Across diverse environments
and roles, ShieldGPT consistently delivers precise and insightful
analyses.

Take the Slowloris attack for example, which aims to overload a
web server by sending HTTP requests with incomplete headers and
then keep the connection open for as long as possible. The generated
analysis would reveal a relatively low average byte rate alongside
an excessively long flow completion time. Notably, ShieldGPT iden-
tifies common attack patterns, such as the sequential transmission
of two consecutive ’\r\n’ within the HTTP header across separate
requests.

In the case of the Slowbody attack, which sends incomplete
HTTP POST requests with a large Content-Length value within the
HTTP header and keeps the connection open for a long time, the
explanation generated by ShieldGPT based on the provided flow
information is outlined below:

Traffic-dependent explanation for a Slowbody attack

1. Large Content-Length Value: The fifth packet has a payload
with a Content-Length of 4096, but the actual payload is much
smaller. This indicates that the attacker sends less data than
expected.
2. Low Packet Rate: The packet rate is 0.644 packets per second,
which is relatively low. The attacker declares a large content
length but sends very slowly to keep the connection open for
as long as possible.
3. Incomplete HTTP POST Requests: The payload includes the
header of the POST request but the body of the request is not
fully sent.

The significant alignment of ShieldGPT’s analyses with the
unique characteristics of various attacks enhances the explainability
and dependability of the detection model employed in ShieldGPT.

4.3 Attack Mitigation Strategies
Based on existing DDoS datasets, our analysis reveals that Shield-
GPT is capable of generating pragmatic mitigation directives, ac-
companied by actionable commands, when provided with appro-
priately structured prompts.

Using the Cisco router as a defense device, we list common miti-
gation instructions generated by ShieldGPT against various DDoS
attacks in Table 4. As shown, in addition to typical but stringent
defense methods such as IP address blocking through ACL, less
aggressive mitigation approaches like rate limiting, connection

The significant alignment of ShieldGPT’s analyses with the
unique characteristics of various attacks enhances the explainability
and dependability of the detection model employed in ShieldGPT.

4.3 Attack Mitigation Strategies
Based on existing DDoS datasets, our analysis reveals that Shield-
GPT is capable of generating pragmatic mitigation directives, ac-
companied by actionable commands, when provided with appro-
priately structured prompts.

Using the Cisco router as a defense device, we list common miti-
gation instructions generated by ShieldGPT against various DDoS
attacks in Table 4. As shown, in addition to typical but stringent
defense methods such as IP address blocking through ACL, less
aggressive mitigation approaches like rate limiting, connection

Table 4: DDoS mitigation instructions formulated for Cisco
IOS by ShieldGPT

Instruction Example Command Interpretation

ACL access-list 101 deny ip
<malicious-IP> any

Block traffic from an identi-
fied malicious source IP ad-
dress

Rate Limit-
ing

rate-limit input <rate>
<normal-size> <burst-size>
conform-action transmit
exceed-action drop

Constrain the number of re-
quests a single IP can make
within a certain period.

Connection
Limiting

ip http max-connections
<number>

Restrict the number of simul-
taneous HTTP connections
from a single IP address.

TCP Inter-
cept

ip tcp intercept max-
incomplete high <maxi-
mum> low <minimum>

Limit the number of incom-
plete TCP connections.

Connection
Timeout

ip tcp synwait-time <time> Set a short timeout for in-
complete TCP connection.

Address
Verifica-
tion

ip verify unicast source
reachable-via rx

Validate the accessibility of
the source IP address in an
incoming packet.

limiting, timeout adjustment, and address verification are also con-
sidered. This indicates that ShieldGPT has the potential to generate
complex and hierarchical mitigation strategies to block malicious
traffic while allowing legitimate traffic to pass through unaffected.

For instance, in the case of a Slowheaders attack, which sends
HTTP requests in pieces as slowly as possible to keep the server
waiting and thus wasting its resources, the mitigation strategy is
outlined below:

limiting, timeout adjustment, and address verification are also con-
sidered. This indicates that ShieldGPT has the potential to generate
complex and hierarchical mitigation strategies to block malicious
traffic while allowing legitimate traffic to pass through unaffected.

For instance, in the case of a Slowheaders attack, which sends
HTTP requests in pieces as slowly as possible to keep the server
waiting and thus wasting its resources, the mitigation strategy is
outlined below:

The mitigation strategy for a Slowheaders attack

1. Set Connection Timeout: Configure the router to close the
connection if it does not receive the full HTTP header within a
certain time limit.
ip http timeout-policy idle 60 life 86400 requests 10000
2. Limit the Number of Connections: Limit the number of
simultaneous connections from a single IP address.
ip http max-connections 100

In more detail, the command ip http timeout-policy idle 60 life
86400 requests 10000 configures the HTTP server to close idle con-
nections after 60 seconds of inacitvity, terminate any connection
after it has been open for 24 hours, and close any connection af-
ter it has processed 10,000 requests. By configuring ip http max-
connections 100, the router is instructed to allow up to 100 HTTP
connections simultaneously.

Futhermore, to counteract a Hulk attack, which endeavors to
exhaust server resources by generating a high volume of unique and
seemingly legitimate HTTP requests, the following configuration
will be devised for a Snort IPS:

In more detail, the command ip http timeout-policy idle 60 life
86400 requests 10000 configures the HTTP server to close idle con-
nections after 60 seconds of inacitvity, terminate any connection
after it has been open for 24 hours, and close any connection af-
ter it has processed 10,000 requests. By configuring ip http max-
connections 100, the router is instructed to allow up to 100 HTTP
connections simultaneously.

Futhermore, to counteract a Hulk attack, which endeavors to
exhaust server resources by generating a high volume of unique and
seemingly legitimate HTTP requests, the following configuration
will be devised for a Snort IPS:
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The mitigation strategy for a Hulk attack

1. Rate Limiting: Limit the number of requests that a single
IP address can make in a certain period.
rate_filter track by_src, count 100, seconds 60, new_action drop,
timeout 300
2. IP Blacklisting: If a source IP is identified as a Hulk attacker,
it can be added to a blacklist to drop all its future packets.
ipvar BLACKLIST [192.168.56.1]
drop tcp $BLACKLIST any -> any any (msg:"Blacklisted IP De-
tected"; sid:1000002; rev:1;)

The first rule will discard all packets from an IP address if it sends
more than 100 packets in 60 seconds, and this rule will remain in
effect for 300 seconds. The second rule will block all TCP packets
from the blacklisted IP address.

To mitigate a Slowbody attack on a Linux server using iptables,
ShieldGPT can generate a variety of commands, including those
for connection limiting and timeout filtering, as illustrated below:

The first rule will discard all packets from an IP address if it sends
more than 100 packets in 60 seconds, and this rule will remain in
effect for 300 seconds. The second rule will block all TCP packets
from the blacklisted IP address.

To mitigate a Slowbody attack on a Linux server using iptables,
ShieldGPT can generate a variety of commands, including those
for connection limiting and timeout filtering, as illustrated below:

The mitigation strategy for a Slowbody attack

1. Limit the number of connections per IP: The following
command will limit the number of connections to 10 per client
IP.
iptables -A INPUT -p tcp –syn –dport 80 -m connlimit –connlimit-
above 10 -j REJECT
2. Set the connection timeout: The following command will
set the connection timeout to 30 seconds to allow the server to
close idle connections more quickly.
echo 30 > /proc/sys/net/ipv4/tcp_fin_timeout

5 RELATEDWORK
The integration of Large Language Models (LLMs) into networking,
particularly for enhancing network security, is garnering significant
interest.

For traffic classification tasks, transformer-based models, e.g.,
BERT, GPT, and T5, demonstrate their promising performance. For
instance, Lin et al. [11] propose ET-BERT for encrypted traffic
classification, which pre-trains deep contextualized datagram-level
representation from large-scale unlabeled data. To better encode
and represent traffic data, the NetGPT [13] and Lens [17] have been
proposed based on pre-training and fine-tuning the GPT-2 and T5
large models, respectively. These models employ network-specific
pre-training tasks, demonstrating efficacy in downstream applica-
tions such as traffic classification and attack detection. Notably,
SecurityBERT [4] has been introduced for cyber threat detection
within IoT networks.

Beyond traffic classification, efforts are being made to harness
LLMs for generating explanations in Network Intrusion Detection
Systems (NIDS). Ziems et al. [20] propose LLM-DTE which explores
the use of LLMs to provide explanations and additional background
knowledge for decisions made by tree-based NIDS. They also con-
duct human evaluation studies to show the correlation between
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LLM-generated explanations and human understanding. Addition-
ally, ChatIDS [8] is designed to explain alerts from NIDSs to non-
experts. Specifically, by sending anonymized alerts to ChatGPT,
ChatIDS can intuitively explain the alert and suggest meaningful
countermeasures for cyber threats.

Current research demonstrates the potential of leveraging LLMs
in network security, particularly for DDoS mitigation efforts. De-
spite these advancements, the absence of comprehensive explana-
tions for attack classification and the need for actionable recom-
mendations highlight the importance of continued exploration in
this area.

6 CONCLUSION AND FUTUREWORK
In this paper, we present ShieldGPT, an innovative DDoS miti-
gation framework leveraging large language models (LLMs). We
develop a specialized traffic representation scheme and tailored
prompt templates to optimize LLMs for DDoS mitigation tasks. Ini-
tial experiments demonstrate ShieldGPT’s superior capability in
providing detailed explanatory analyses and suggesting effective
mitigation strategies. We believe that ShieldGPT represents a mean-
ingful starting point for applying LLMs to the DDoS mitigation
area.

Our prototype and early findings highlight the feasibility of
creating an autonomous system for DDoS mitigation. This research
opens up several avenues for further investigation:

Validity and Safety. While ShieldGPT exhibits proficiency in
generating tailored mitigation instructions for various DDoS at-
tacks, further checks are necessary given that these instructions
are intended for deployment on actual network devices. First, we
need to verify that the generated commands are syntactically and
semantically correct, as this is a prerequisite for effective attack
mitigation. Second, it is essential to implement safety checks to
prevent unexpected risks, such as improper route configuration
causing congestion or loops, and unauthorized commands leading
to data breaches or service disruptions. Consequently, establish-
ing a robust validation mechanism is critical for future research to
ensure the validity and safety of automated mitigation strategies.

Automatic Execution. Currently, ShieldGPT generates text-
based mitigation instructions necessitating manual implementation
by network administrators. For a truly autonomous DDoS defense
system, these instructions must be automatically executed via ma-
ture technical stacks and extensive application programming in-
terfaces (APIs). This advancement will enable rapid response to
threats, significantly improving cybersecurity. Achieving this ob-
jective requires concerted efforts in both research and industry
sectors.

Broader Applications. In ShieldGPT, we construct correspond-
ing prompt templates for generating desired outputs through role-
based representations. This approach can be generalized to other
network tasks, such as generating diagnostic analysis in network di-
agnosis or generating control commands in network management.
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