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Abstract—Network traffic understanding is crucial to pro-
viding high-quality network services and protecting network
security. However, due to the growing complexity of networks and
the rising proportion of encrypted traffic, existing methods for
network traffic understanding face severe challenges. Traditional
approaches rely on manually designed features or require a
large amount of labeled data, while pre-trained models offer
new possibilities. Nevertheless, existing pre-trained models have
the following limitations: (1) Their inputs only contain features
from the packet content, neglecting temporal information about
network dynamics. (2) Their pre-training targets only focus on
static characteristics of the data stream without understanding
the process of the network transmission. This paper presents
the Pre-trained model for network Traffic Understanding (PTU),
an innovative model that employs self-supervised pre-training to
address the challenges of network traffic understanding. In PTU,
we design a traffic representation scheme that integrates static
packet content and network dynamics into a unified input space.
Furthermore, we propose a pre-training method that includes
four tailored pre-training targets. This approach enables PTU
to capture both static and dynamic characteristics of network
traffic from massive amounts of unlabeled data, thereby achieving
enhanced performance in downstream tasks through fine-tuning.
Extensive experiments confirm PTU’s state-of-the-art (SOTA)
performance. In traffic classification tasks, PTU achieves an F1
score of over 0.99 and secures a more than 10% improvement in
accuracy in the most challenging task of encrypted application
classification.

Index Terms—Network Traffic Understanding, Pre-trained
Model, Traffic Representation, Pre-training Target.

I. INTRODUCTION

Network traffic understanding refers to the systematic anal-
ysis and interpretation of data transmitted through networks
to identify and extract information encapsulated within net-
work traffic. As networks grow in complexity, providing
high-quality network services and protecting network secu-
rity necessitate operators to engage in a diverse range of
network traffic understanding tasks [1]. These tasks include
network fault diagnosis, application classification, intrusion
detection, Quality of Experience (QoE) inference, and many
other tasks [2]–[5]. However, due to the growing complexity
and continuous expansion of networks [6], along with the
increasing proportion of encrypted traffic [7], network traffic
understanding faces severe challenges.
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Many efforts have been made to address the task of
network traffic understanding, yet existing methods possess
certain limitations. These methods can be categorized into
four categories: rule-based and fingerprint-based matching,
statistical machine learning, deep learning methods, and pre-
trained models. Rule-based and fingerprint-based matching ap-
proaches extract specific patterns from network traffic. Statisti-
cal machine learning approaches [4], [8], [9] extract statistical
features of network traffic. Deep learning methods [10]–[13]
using deep learning models like CNN and RNN to process
raw network traffic in an end-to-end manner. However, the
efficacy of these approaches is significantly limited by their
dependence on manually designed features or requirements
for extensive labeled data, which is laborious and time-
consuming [14]–[16]. In today’s rapidly evolving networks,
where traffic characteristics and patterns are constantly chang-
ing, the generalization ability of models becomes increasingly
crucial [17].

Since the introduction of the transformer architecture [18],
pre-trained models have made significant progress in vari-
ous fields, including computer vision [19], natural language
processing [20], and many others [21]. The input data are
initially transformed into token sequences and then mapped
to input vectors through the embedding layer. Following
this, transformer-based models undergo self-supervised pre-
training on extensive unlabeled data to discover universal
structures and general patterns. Subsequently, by fine-tuning
on a modest amount of task-specific labeled data, pre-trained
models transfer the domain knowledge acquired during pre-
training to specific downstream tasks, achieving promising
performance [22]. In the field of network traffic understanding,
ET-BERT [23] utilizes BERT [20] to perform end-to-end
traffic classification on the payload of encrypted traffic; flow-
MAE [24] and YaTC [25] transform packets into grayscale
images and then use MAE [19] for traffic classification.
However, these methods share common limitations:

• The inputs of these methods only contain features from
the packet contents, lacking temporal information about
network dynamics. Mapping information from different
modalities into the same input space while avoiding ambi-
guity and preserving the correct semantics is challenging.

• The design of the pre-training target is limited to focusing
on the static characteristics of the data stream, failing to
learn domain knowledge about the network transmission979-8-3503-5171-2/24/$31.00 ©2024 IEEE
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process. Constructing pre-training targets that help to
understand both static and dynamic aspects of network
traffic remains an unsolved problem.

Consequently, these models can only deal with network
traffic understanding tasks that predominantly rely on static
features, e.g., traffic classification. However, when confronted
with more challenging tasks, such as encrypted traffic classi-
fication where static features are less discernible, their perfor-
mance significantly declines. Furthermore, their effectiveness
is limited in tasks that necessitate an understanding of network
dynamics, such as QoE inference. This limitation hampers the
models’ generalization capabilities and their ability to address
a broad spectrum of network traffic understanding tasks.

To address the challenges mentioned above, we propose a
novel Pre-trained model for network Traffic Understanding
(PTU). Firstly, we develop a traffic representation scheme that
transforms network traffic into a sequence of vectors. This
scheme integrates packet content and network dynamics into a
unified input space, incorporating multi-modality information
to ensure a meaningful representation of network traffic. The
embedding layer is modified to mitigate semantic ambiguity
between packet tokens and temporal tokens, effectively con-
verting token sequences into discriminative input vectors for
PTU. Secondly, we design a pre-training method with four
specific targets to learn the semantic and structural attributes
of network traffic, focusing on both static and dynamic aspects.
The static characteristics of network traffic encompass the
semantic structure within packets as well as the contextual
relationships between different packets. Hence, we design
the Masked Packet Reconstruction (MPR) target to aid in
understanding semantics within packets and the Same Session
Prediction (SSP) target to grasp the relevance between packets.
The dynamic characteristics of network traffic primarily refer
to temporal properties of network transmission. We design two
additional pre-training targets, Historical and Future Interval
Prediction (HIP and FIP), to learn the temporal features of
network traffic from the perspective of network transmission.

After pre-training on a large-scale, task-agnostic dataset
utilizing the four pre-training targets, PTU is adept at handling
a variety of network traffic understanding tasks by fine-tuning
with a minimal amount of task-specific labeled data. To vali-
date PTU’s performance, we apply it to two primary categories
of network traffic understanding tasks: traffic classification and
QoE inference. Experiment results demonstrate the superiority
of PTU compared to various baseline models. In all tasks
evaluated, PTU achieves state-of-the-art (SOTA) results. In
traffic classification tasks, PTU achieves an F1 score of over
0.99. In the most challenging task of encrypted application
classification, it achieves a more than 10% improvement in
accuracy over previous methods. In QoE inference tasks, PTU
leads by an average of over 10% in accuracy compared to other
pre-trained models and achieves an average F1 score of over
0.93. Moreover, PTU exhibits strong robustness, maintaining
an accuracy above 90% even when the amount of labeled data
was reduced to a quarter of the original, with no significant
performance degradation observed.

Our main contributions are listed as follows:
1) We propose a traffic representation scheme that converts

network packets into input vectors enriched with infor-
mation from two modalities–packet content and network
dynamics.

2) We design a pre-training method tailored for network
traffic understanding tasks, featuring four dedicated pre-
training targets that leverage large-scale unlabeled data
to learn a universal representation of network traffic.

3) We implement PTU and demonstrate how to apply
PTU to perform various network traffic understanding
tasks. Extensive experiments are conducted to verify
the effectiveness and applicability of PTU. In addition
to the overall performance comparison, a fine-grained
analysis of how different design aspects of the model
contribute to its performance is also carried out, which
can enlighten further research.

II. MODEL DESIGN

To tackle the diverse tasks of network traffic under-
standing, we propose Pre-trained model for network Traffic
Understanding (PTU), a model pre-trained on extensive un-
labeled raw traffic and then capable of being fine-tuned for
downstream tasks with minimal labeled data. In this section,
we will sequentially detail the process of constructing input
vectors from network traffic and the pre-training method of
PTU. The entire process is illustrated in Fig. 1. The differences
and comparisons between PTU and other pre-trained models
in terms of traffic representation and pre-training methods
are summarized in Table I. The values of the main hyper-
parameters used in PTU will be discussed in Section III-B.

A. Traffic Representation

There are two main reasons for selecting the packet as the
input unit. First, to understand network traffic accurately and
in real-time during deployment, it is necessary to conduct
fine-grained detection on a per-packet basis [5], [26]. Second,
packets are semantically complete and self-contained units,
which is analogous to how LLM uses semantically complete
sentences as input units [27]. This similarity allows PTU to
analyze the semantics of network traffic effectively.

The network and transport headers of the packet contains
important information, which is crucial for network traffic
understanding [6]. Removing entire header field as done by
ET-BERT may lead to substantial performance loss, as we
discuss in Section IV-C. To prevent the model from learning
harmful biases from strong identification fields of the packet
header, which could lead to incorrect causal reasoning, we
remove IP addresses and MAC addresses from the packet
headers [28]. Such biases would impair the model’s perfor-
mance upon deployment.The checksum field is also removed,
as it loses the original semantics after removing the IP ad-
dresses. Subsequently, packet content is segmented into token
sequences by dividing every Lp bits into individual tokens.

Network dynamics are also crucial for specific network
traffic understanding tasks, e.g., QoE inference. To address
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Fig. 1: The architecture and application of PTU

a broad spectrum of network traffic understanding tasks, we
incorporate network dynamic features for input construction.
Specifically, we choose to incorporate the inter-arrival time of
packets belonging to the same session flow. A session flow
represents the bidirectional data transmission process between
two endpoints in network transmission. It is defined as a
sequence of packets with the same protocol, IP, and port
quintuple (or with the source and destination IP and port
reversed). The inter-arrival time of these packets collectively
reflects the end-to-end network dynamics.

For the nth packet within a session, we incorporate the
most recent min(n,Nt) inter-arrival time of that session flow.
This approach incorporates temporal information from the
preceding period of each packet, enabling the model to learn
and comprehend network dynamics. Subsequently, the token
sequence is truncated or padded to Ni tokens in length,
forming the final input tokens, as illustrated in the lower-
middle of Fig. 1.

Given the substantial variability in packet inter-arrival times,
ranging from the order of seconds to nanoseconds [29], it is
necessary to perform normalization. The inter-arrival time is
normalized into the range (0,1), and then Lt decimal places
are taken to form the temporal token corresponding to this
inter-arrival time. Given most packet inter-arrival times are
relatively small while a minority of inter-arrival times may be
several orders of magnitude greater than the average, min-max
normalization would not work properly. To better distribute the
inter-arrival times evenly across the entire token space, we use
(1) for normalization, inspired by [30], [31].

temporal token = sigmoid(log10(inter arrival)) (1)

This transformation provides a finer granularity for numeri-
cally smaller inter-arrival times, ensuring a uniform projection
from the inter-arrival times to the entire token space.

Subsequently, an embedding layer is used to convert the to-
ken sequence into input vectors for PTU. The embedding layer
utilized by most LLMs [20] consists of three components: to-
ken embedding, position embedding, and segment embedding.
However, due to the inherent differences between network

traffic and natural language, the embedding layer needs to be
modified to process the network traffic. Firstly, in network
traffic, the semantic relationship between tokens belonging to
different packets is distinct from the relationship among tokens
within the same packet. To differentiate tokens of different
packets, the segment embedding, originally used to distinguish
between sentences, is modified into packet embedding. The
packet embedding assigns tokens from different packets with
distinct embedding values. Secondly, the input tokens of PTU
comprise both packet tokens and temporal tokens, which
are semantically distinct. To differentiate between these two
modalities, we assign independent lookup table weights in the
token embedding for each type of token, thereby preventing
semantic ambiguity and confusion. Additionally, to enable the
model to recognize the distinction and differences between
packet tokens and temporal tokens, we add time embedding.
The time embedding provides packet tokens and temporal
tokens with distinct embedding values, 0 for non-temporal
token and 1 for temporal token, highlighting the heterogeneity
between different modalities. The input vector for PTU is
obtained by summing the outputs of token embedding, position
embedding, packet embedding, and time embedding. The
structure of the embedding layer and the process of generating
input vectors is depicted in the lower-middle of Fig. 1.

B. Pre-training Method

Before being applied to specific downstream tasks,
Transformer-based models are pre-trained on large-scale un-
labeled data to learn general characteristics and extract mean-
ingful representations. These general features apply to various
downstream tasks and enhance performance, as they reflect
the universal patterns and structures in the data rather than
task-specific information.

Existing pre-training methods are either not directly ap-
plicable to the scenario of network traffic understanding or
have certain shortcomings. The pre-training objectives of
models like BERT and GPT are primarily designed for the
natural language process. However, there exists a considerable
disparity between network traffic and natural language. For
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TABLE I: Traffic Representation and Pre-Training Methods Comparison

Models Packet Header Packet Payload Bias Removal Temporal Info Intra-packet Structure Inter-packet Relation Network Dynamic

ET-BERT [23] ✘ ✔ ✔ ✘ ✔ ✔ ✘
YaTC [25] ✔ ✔ ✘ ✘ ✔ ✘ ✘
PTU(Ours) ✔ ✔ ✔ ✔ ✔ ✔ ✔

instance, there is a significant difference in the structural
organization between natural language and network traffic.
Natural language can be depicted solely by the content. In
contrast, beyond the value of the byte stream, the temporal
characteristics of network transmission are also indispensable
for a comprehensive description of network traffic.

Models like ET-BERT attempt to bridge the gap between
the structural form of network traffic and natural language.
It achieves this by conceptualizing BURSTs—aggregates of
packet payloads heading in the same direction—as analogous
to sentences in natural language, thereby repurposing BERT’s
pre-training tasks. Nonetheless, this methodology falls short in
addressing the semantic disparities that exist between network
traffic and natural language. Furthermore, it overlooks the
dynamic and evolving nature of network traffic, which is
a critical oversight in the context of comprehensive traffic
understanding. Consequently, there is an imperative need to
conceive more comprehensive pre-training methodologies that
are specifically calibrated to the nuanced attributes of network
traffic.

For network traffic, the crucial information includes both
the static features of the byte stream and the dynamic charac-
teristics of the network transmission process. Combining static
and dynamic attributes is essential to fully describe network
traffic. However, existing pre-trained models only focus on
a small part of this information, as shown in Table I. For
static features, the individual packet is the fundamental unit
of network traffic. Therefore, the semantic meaning of bytes
within a packet is crucial. The session flow, on the other hand,
represents the communication stream between endpoints. The
structure of session flow and the relationships among packets
are vital for comprehending the structure and semantics of net-
work traffic. In terms of dynamic characteristics, the temporal
information of the network transmission process is essential.

To ensure PTU achieves a holistic comprehension of net-
work traffic, encompassing both the temporal dynamics and
the packet content, we design four dedicated pre-training
targets: Masked Packet Reconstruction for intra-packet seman-
tics, Same Session Prediction for session structure, Historical
Interval Prediction and Future Interval Prediction for temporal
information. Together, these pre-training targets constitute a
robust framework, empowering PTU to learn all the essential
domain knowledge about network traffic that are imperative
for a wide array of traffic understanding tasks.

For pre-training input, we concatenate the tokens corre-
sponding to two packets and append a special token [PKT]
at the end of each packet’s token sequence for separation.
Similarly we add a special token [CLS] at the onset of the
input token sequence to aggregate information across the entire

input. To obtain a deep bidirectional contextualized repre-
sentation of network traffic, the sequence of input vectors is
transformed into output vectors by passing it through a BERT-
based model backbone, during which contextual information
is acquired. The process of pre-training is illustrated in Fig. 1.
In the following, we elaborate the methodology and rationale
behind PTU’s four pre-training targets.

Masked Packet Reconstruction (MPR): This target, akin
to the MLM target in BERT [20], facilitates PTU in discerning
the semantic architecture encapsulated within network pack-
ets and distilling bidirectionally contextualized representation
from packet content. Furthermore, it ensures that the token
embedding is adept at encapsulating the distinctive semantic
nuances of the content tokens within the packets. During
pre-training, we randomly select Pmasked% of the packet
tokens and replace them with [MASK] with a probability of
Pmask%, replace them with a random token with a probability
of Prandom%, and leave them unchanged with a probability of
(100-Pmask-Prandom)%. The model is trained to restore the
selected tokens based on the context, utilizing the negative
log-likelihood function as the loss function, which is formally
defined as follows:

LMPR = −
k∑

i=1

log(P (MASKi = tokeni|X̂; θ)) (2)

Where θ represents the trainable parameters of PTU, k is
the total number of selected packet tokens, X̂ is the input
sequence X after the masking process, MASKi is the output
result token by PTU of the ith masked token and tokeni is
the original value of the ith masked token.

Same Session Prediction (SSP): To enhance PTU’s capa-
bility in discerning logical interconnections among packets,
we substitute the NSP target in BERT [20] with the Same
Session Prediction (SSP) target. This novel target is metic-
ulously crafted to help the model discern the characteristics
and boundaries of session flows, thereby achieving a profound
comprehension of the hierarchical fabric inherent in network
traffic, enabling a more nuanced understanding of network
traffic dynamics. During pre-training, two packets A and B
are concatenated and input into the PTU, where B is the sub-
sequent packet after A in the same session with a probability
of Pnext%, a randomly selected packet from A’s session with
a probability of Psession%, and from a different session flow
with (100-Pnext-Psession)% probability. The output vector
corresponding to the [CLS] token is fed into a binary classifier
to tell whether the two packets belong to the same session.
This process enables the [CLS] output vector to encapsulate a
summary of the entire input sequence’s information, making
this output vector suitable for downstream network traffic
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understanding tasks. The loss function for a given pair of input
packets P = (PA, PB) and their true label y ∈ [0,1] is formally
defined as:

LSSP = −log(P (y|P ; θ)) (3)

Historical and Future Interval Prediction (HIP and FIP):
These targets are meticulously engineered to facilitate PTU’s
comprehension of network traffic dynamics. They are crafted
to enable the model to discern the intricate processes that
data packets undergo during transmission. Furthermore, these
objectives enable PTU to extract the holistic end-to-end status
of the network’s underlying infrastructure. For the Historical
Interval Prediction target, we select Ptime% of the temporal
tokens and replace them with [PREV], requiring the model
to infer the original temporal tokens. For the Future Interval
Prediction target, the inter-arrival time between each packet
and the next packet in the session flow is recorded during
data processing. Then, with a Ptime% chance, we replace the
terminal token [PKT] of each packet with [NEXT] and require
the model to predict the corresponding next interval. Consid-
ering the semantic proximity of numerically adjacent temporal
tokens, perturbation is introduced by adding Gaussian noise to
the target temporal tokens. This approach enables the model
to discern the accurate semantics of temporal tokens and grasp
the similarity of adjacent intervals. The total loss function for
these two targets is defined as:

LHIP = −
t∑

i=1

log(P (TIMEi = hii|X̂; θ)) (4)

LFIP = −log(P (Fi = fi|X̂; θ)) (5)

Where t is the total number of selected temporal tokens,
hii is the expected value of the ith chosen temporal token,
TIMEi is the predicted token of the ith chosen temporal
token, Fi and fi correspond to the expected and the predicted
value of the future inter-arrival time.

The overall pre-training loss is the sum of the loss from the
four targets mentioned above:

L = LMPR + LSSP + LHIP + LFIP (6)

III. APPLICATION AND IMPLEMENTATION

In this section, we will first discuss how to apply PTU to
various traffic understanding tasks, including traffic classifica-
tion and QoE inference. Subsequently, we will elaborate on
the methodologies and details concerning the implementation
of PTU.

A. Application of PTU

We apply PTU at the packet level for network traffic under-
standing tasks to achieve real-time processing and fine-grained
analysis. The model’s architecture used for downstream tasks
is fundamentally consistent with pre-training. Starting with
the pre-trained model weights, the entire PTU model is fine-
tuned on a small set of task-specific labeled data. Due to the
presence of the SSP target, the output vector corresponding to
the [CLS] token aggregates information from the entire input

sequence during pre-training, so we utilize the output vector
corresponding to [CLS] for downstream tasks. To apply PTU
to a variety of traffic understanding tasks, the sole modification
required is the addition of a task-specific output layer atop the
[CLS] token’s output vector.

In this paper, PTU is applied to two major categories of
tasks: traffic classification and QoE inference. Traffic classi-
fication involves categorizing network traffic into predefined
categories. Typically, a session flow is assigned to a single
category, which represents its inherent and intrinsic attributes.
This task predominantly relies on the static features of network
traffic. However, when dealing with encrypted traffic, the
static features become obscured and less discernable due to
encryption. In such cases, temporal features of the network
traffic also contribute to the classification of encrypted traffic.
QoE inference refers to predicting the QoE metrics of network
traffic within the current time slice. Typically, a session flow
exhibits varying QoE metric values at different moments. This
task necessitates a comprehensive understanding of both the
upper-layer application information encapsulated within the
packet content and the dynamics of the underlying network.

Benefiting from the domain knowledge about packet content
and network dynamics acquired during pre-training, PTU
achieves satisfactory performance on a variety of downstream
tasks with only a small amount of labeled data. The superior
performance and low dependence on the volume of labeled
data endow PTU with high practical value, making it appli-
cable to various scenarios and network traffic understanding
tasks.

B. Implementation of PTU

In this study, we employ the stardard BERT [20] as the
backbone of PTU, which comprises 12 attention heads and 12
layers, utilizing a 768-dimensional embedding vector for each
token. And the implementation is based on Uer-py [32] and
PyTorch 2.1.2.

Selecting an appropriate vocabulary size can significantly
enhance the pre-trained model’s performance [33]. Empiri-
cally, most BERT-based pre-trained models opt for a vocab-
ulary size of around tens of thousands or so. To obtain a
comparable vocab size, we segment the byte sequence of the
packet into tokens every Lp=16 bits, setting the vocabulary
size to 216 = 65536. We add most Nt=10 inter-arrival time
and truncate the total input length to Ni=128 tokens for
each packet. We run a hyper-parameter tuning step using a
coarse grid search. The following settings yield the best per-
formance: Pmasked=20, Pmask=80, Prandom=10, Pnext=30,
Psession=30, and Ptime=50.

For pre-training, approximately 100GB of unlabeled net-
work traffic data is collected from public datasets [34] [35].
This traffic data encompasses various network protocols, in-
cluding but not limited to QUIC, TLS, FTP, HTTP, and SSH,
and contains both encrypted and plaintext packets. Notably,
there is no overlap between the unlabeled datasets used for
pre-training and the labeled task-specific datasets used for
performance evaluation, ensuring the accuracy of performance
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assessments and validating the generalization ability and ro-
bustness of PTU. The pre-training corpus and the resulting
pre-trained model weight is the same for all downstream tasks,
alleviate the pressure for data collection.

For fine-tuning, the inputs are similar to pre-training, and
the network traffic understanding tasks are performed at the
granularity of individual packet. For each task, a maximum
of 5000 samples per category is selected. The dataset is then
divided into training, validation, and testing sets in an 8:1:1
ratio.

All experiments are conducted on a server equipped with
NVIDIA GeForce RTX 3090 GPUs. During the pre-training
phase, four GPUs are utilized, whereas for fine-tuning, a single
GPU suffices. For pre-training, the batch size is set to 32, with
a total of 500,000 steps completed over approximately five
days. During fine-tuning, the batch size is maintained at 32
throughout 10 epochs. Depending on the size of the labeled
dataset, the fine-tuning process will take about 3 to 10 hours.

IV. EXPERIMENT

We conduct evaluation experiments on a variety of network
traffic understanding tasks divided into two major categories:
traffic classification and QoE inference. The evaluation exper-
iments aim to address the following research questions (RQ):

RQ1: How does PTU perform on the two major categories
of downstream tasks–traffic classification and QoE
inference–compared to previous approaches?

RQ2: Whether the components of traffic representation and
the four tailored pre-training targets positively influence
PTU’s performance on downstream tasks.

RQ3: How does PTU perform in few-shot learning scenarios?
Few-shot learning refers to learning and generalizing
from a minimal number of labeled data.

RQ4: How is the inference efficiency of PTU, and what factors
influence it?

A. Evaluation Setup

Datasets. The tasks of traffic classification are conducted
on the following datasets: Application classification and ser-
vice classification on ISCX-VPN-2016 [36], malware traffic
identification on USTC-TFC-2016 [37], encrypted application
classification on CSTNET-TLS-1.3 [23], network attack iden-
tification on CIC-IoT-2022 [38], mobile application classifica-
tion on Cross-Platform(iOS) [39] and mobile application clas-
sification on Cross-Platform(Android) [39]. The tasks of QoE
inference are conducted on the following datasets: buffer level
classification, video resolution classification, and video state
classification on CC-YouTube-QoE-2018 [3], MOS inference
on KoNViD-1k [40] and MOS inference on LIVE Netflix [41].
For the two MOS inference tasks, due to the lack of publicly
available packet capture files, we construct inputs based on the
method used in LSTM-QoE [13], using video metadata and
video features within every 100ms time slice and truncated the
total input length to 128 tokens.

Evaluation Metrics. For traffic classification tasks and QoE
classification tasks, the inference result corresponds to one

label out of a finite set of labels for each input. We compute
two well-established metrics for these tasks: Accuracy and
F1 score [39] [42]. For the task’s overall performance, the
macro-average of each class is calculated to avoid biased
results due to data imbalance [43]. For the two MOS inference
tasks mentioned above, the inference result is a sequence of
MOS scores. Following the evaluation metrics established in
prior literature for these tasks [44], we calculate the Pearson
Linear Correlation Coefficient (PLCC) and Spearman Rank
Correlation Coefficient (SRCC) between predicted and actual
MOS sequences of the video stream.

Baselines. For comparison, several SOTA methods are
chosen. (1) Fingerprint-based matching: Flowprint [39]; (2)
Statistical machine learning: CUMUL [8] and Requet [3]; (3)
Deep learning methods: Deeppacket [10], DA-QOE [44] and
LSTM-QOE [13]; (4) Pre-trained model: ET-BERT [23] and
YaTC [25]. Flowprint, CUMUL, and Deeppacket, designed
for traffic classification tasks, are tested on corresponding
traffic classification datasets. Requet, proposed to address
QoE metric classification tasks, is evaluated on the discrete
label QoE dataset CC-YouTube-QoE-2018 [3]. LSTM-QOE
and DA-QOE, designed to solve MOS inference tasks for
video streams, are tested on datasets featuring continuous
MOS scores, namely LIVE Netflix [41] and KoNViD-1k [40].
Performance evaluation of the pre-trained models ET-BERT,
YaTC, and our model PTU is conducted across all datasets to
validate their generalization ability.

B. Overall Comparison

The evaluation results are listed in Table II, III, and IV. In
summary, PTU achieves SOTA performance across all tasks
tested, with a significant accuracy improvement compared to
previous methods. PTU’s high accuracy and superior perfor-
mance on downstream tasks are primarily attributed to the
domain knowledge of packet content and network dynamics
acquired during pre-training. This knowledge is efficiently
transferred to specific downstream tasks with the aid of a small
amount of labeled data.

Traffic Classification: PTU achieves an accuracy rate
exceeding 99% in all traffic classification tasks conducted,
outperforming other methods. In the most challenging task of
encrypted application classification, PTU achieves a more than
10% improvement in accuracy, demonstrating the exceptional
performance of PTU.

FlowPrint exhibits a significant performance decline on
datasets with stronger encryption protocols, highlighting the
incompetence of matching-based methods in dealing with
encrypted traffic. CUMUL performs poorly overall, indicating
its heavy dependence on manually selected features, as its
default statistical feature set does not apply well in most
scenarios. Deeppacket experiences pronounced performance
degradation in certain scenarios, reflecting the weak robustness
of deep learning models.

Pre-trained models demonstrate superior performance across
all tasks tested, suggesting that the domain knowledge ac-
quired through pre-training can substantially improve per-

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 01:08:13 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II: Performance Evaluation Results of Traffic Classification tasks

Dataset VPN-App [36] VPN-Ser [36] iOS [39] Android [39] TFC-2016 [37] TLS-1.3 [23] CIC-IoT [38]

Metric AC F1 AC F1 AC F1 AC F1 AC F1 AC F1 AC F1

Flowprint [39] 0.8675 0.6629 0.7894 0.7752 0.9322 0.9159 0.8799 0.8845 0.8097 0.6679 0.1184 0.1070 0.4992 0.4554
CUMUL [8] 0.5208 0.4237 0.5879 0.5727 0.2763 0.1975 0.3667 0.2097 0.5763 0.5775 0.5807 0.5385 0.9289 0.9138
Deeppacket [10] 0.9545 0.9524 0.9339 0.9357 0.9104 0.9052 0.7985 0.8203 0.9624 0.9611 0.8024 0.8203 0.7838 0.7793

ET-BERT [23] 0.9604 0.9665 0.9572 0.9570 0.9743 0.9743 0.9228 0.9059 0.9821 0.9821 0.8978 0.8835 0.7645 0.7543
YaTC [25] 0.9403 0.9407 0.9550 0.9589 0.9721 0.9728 0.9355 0.9342 0.9786 0.9795 0.8792 0.8884 0.9333 0.9324
PTU(Ours) 0.9969 0.9969 0.9986 0.9981 0.9984 0.9994 0.9980 0.9992 0.9992 0.9993 0.9945 0.9940 0.9947 0.9942

TABLE III: Performance Evaluation Results of QoE Inference
tasks with discrete labels

Dataset CC-Buffer [3] CC-Resolution [3] CC-State [3]

Metric AC F1 AC F1 AC F1

Requet [3] 0.9202 0.9105 0.6695 0.6689 0.7685 0.8031

ET-BERT [23] 0.8083 0.8154 0.8379 0.8376 0.6816 0.6782
YaTC [25] 0.8166 0.7914 0.8552 0.8487 0.7207 0.7243
PTU(Ours) 0.9274 0.9232 0.9493 0.9477 0.8597 0.8576

formance in traffic classification tasks. However, ET-BERT,
which does not incorporate information from the packet
header, struggles to identify the flood attacks in the CIC-
IoT dataset. These flood attacks are primarily composed of
overwhelming influxes of data packets sent at a high velocity,
but the payloads of these packets are legitimate, rendering the
payload-only model ET-BERT inadequate. YaTC, on the other
hand, neglects the dimension of network dynamics, failing to
comprehensively and accurately understand network traffic,
thus leading to a significant decline in performance on the
TLS-1.3 dataset with the highest level of encryption.

The input vectors of PTU aggregate information from packet
headers, packet payloads, and network dynamics. This multi-
modal information promotes PTU to extract features from
multiple dimensions of network traffic comprehensively. The
four pre-training targets help the model construct contextual-
ized and universal representation, learning domain knowledge
about the structure of packets and the characteristics of trans-
mission. With a modest amount of fine-tuning, PTU transfers
the domain knowledge to specific traffic classification tasks
and achieves excellent performance across various scenarios,
surpassing 99% in accuracy and F1 score. These results
demonstrate the effectiveness, robustness, and generalization
ability of PTU.

TABLE IV: Performance Evaluation Results of QoE Inference
tasks with continuous labels

Dataset KoNViD-1k [40] LIVE Netflix [41]

Metric PLCC SRCC PLCC SRCC

DA-QoE [44] 0.8270 0.8185 0.8144 0.8280
LSTM-QoE [13] 0.8090 0.7960 0.8230 0.7250

ET-BERT [23] 0.8161 0.8043 0.7533 0.7408
YaTC [25] 0.8042 0.8394 0.8323 0.8496
PTU(Ours) 0.9429 0.9741 0.9608 0.9860

QoE Inference: In all QoE inference tasks evaluated, PTU
maintains high accuracy and achieves SOTA performance.
Compared to other pre-trained models, PTU leads by an
average of 10% in accuracy and achieves an average F1 score
of over 0.93. These results confirm PTU’s capability to handle
a wide range of network traffic understanding tasks.

Requet meticulously constructs and selects statistical fea-
tures based on the characteristics of YouTube video streams,
achieving an accuracy rate above 90% in the binary classifi-
cation task CC-Buffer for YouTube video streams. However,
Requet exhibits a significant decline in performance on other
tasks, indicating that its chosen set of statistical features lacks
universality and only applies to specific scenarios and tasks.

Previous pre-trained models, namely ET-BERT and YaTC,
do not exhibit superior performance over other specifically
designed smaller models in QoE inference tasks. The poor
efficacy is due to the fact that these pre-trained models only
utilize features derived from packet content for input construc-
tion, neglecting temporal information. They also fail to acquire
domain knowledge about the network transmission process
during pre-training. Consequently, when dealing with QoE
inference tasks that require understanding both application
behavior and network dynamics, these models show poor
performance.

In contrast, PTU leverages multi-modal information from
multiple dimensions of network traffic for input construction,
enabling a complete, comprehensive, and accurate depiction
of network traffic. The four tailored pre-training targets allow
PTU to acquire domain knowledge regarding both the static
packet content and dynamic network transmission, generat-
ing discriminative and meaningful representations of network
traffic. Consequently, PTU can grasp the characteristics of
application behavior and the temporal features of the un-
derlying network, achieving superior performance in QoE
inference tasks and outperforming all other methods. These
results confirm PTU’s generalization ability and capability to
handle a broad range of network traffic understanding tasks.

Answer to RQ1: PTU achieves SOTA performance in all
tested network traffic understanding tasks. In traffic classifica-
tion tasks, PTU achieves an F1 score of over 0.99 and a more
than 10% improvement in accuracy over previous methods. In
QoE inference tasks, PTU leads by an average of over 10% in
accuracy compared to other pre-trained models and achieves
an average F1 score of over 0.93.
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TABLE V: Ablation Study

Dataset CSTNET-TLS-1.3 [23] CIC-IoT-2022 [38] CC-Buffer [3] CC-Resolution [3] CC-State [3]

Metric AC F1 AC F1 AC F1 AC F1 AC F1

PTU(full model) 0.9945 0.9945 0.9947 0.9942 0.9274 0.9273 0.9493 0.9496 0.8597 0.8593

w IP 0.9657 0.9673 0.9922 0.9924 0.8981 0.8987 0.9257 0.9247 0.8206 0.8208
w/o header 0.9291 0.9297 0.9713 0.9807 0.8612 0.8614 0.8918 0.8936 0.8134 0.8141
w/o temporal token 0.9422 0.9355 0.9092 0.9054 0.8303 0.8359 0.8581 0.8579 0.6889 0.6881
w/o time embedding 0.9527 0.9553 0.9106 0.9098 0.8321 0.8402 0.8612 0.8630 0.7029 0.7109

w/o pre-training 0.9132 0.9136 0.9806 0.9814 0.8467 0.8495 0.9138 0.9123 0.7872 0.7875
w/o MTM 0.9142 0.9103 0.9754 0.9731 0.9032 0.9051 0.9271 0.9268 0.8461 0.8458
w/o SSP 0.9358 0.9359 0.9903 0.9902 0.9178 0.9191 0.9284 0.9276 0.8431 0.8429
w/o HIP 0.9467 0.9429 0.9913 0.9889 0.8742 0.8705 0.9152 0.9147 0.7968 0.7934
w/o FIP 0.9582 0.9601 0.9926 0.9904 0.8698 0.8684 0.9226 0.9213 0.8031 0.8042

C. Ablation Study

To verify the contribution of each component, ablation
study is conducted across multiple datasets. In Table V, “w
IP” denotes the input construction that retains IP address,
MAC address, and checksum fields; “w/o header” refers to the
input construction that excludes packet headers; “w/o temporal
token” indicates the input construction without incorporating
inter-arrival times; “w/o time embedding” denotes the ab-
sence of the time embedding within the embedding layer.
The pre-trained model weights used for the four categories
mentioned above are consistent with the full model. The
four categories listed below, however, maintain consistency
with the full model in terms of input construction but differ
in the pre-training method: “w/o pre-training” refers to the
model weights are randomly initialized for fine-tuning; “w/o
MPR”, “w/o SSP”, “w/o HIP” and “w/o FIP” stands for pre-
training without corresponding pre-training targets proposed
in Section II-B.

Traffic Representation: Retaining strong identification
fields such as IP addresses leads to a moderate accuracy
decrease. The limited performance loss can be attributed to the
consistent correlation between IP addresses and labels within
the training and testing subsets of a given dataset. However,
when deployed in production environments, the presence of
these fields may cause a more pronounced performance degra-
dation. Discarding packet header fields, such as port numbers
and protocol types, deprives PTU of crucial information, thus
significantly impairing performance.

The exclusion of temporal tokens results in the loss of crit-
ical information regarding the network’s temporal dynamics,
leading to an incomplete and less accurate understanding of
network traffic, thus resulting in lower accuracy across all
traffic understanding tasks, with a pronounced effect on QoE
inference tasks. The removal of time embedding introduces
ambiguity and confusion, as PTU struggles to differentiate
between temporal and packet tokens semantically. As a result,
PTU faces difficulty in extracting meaningful and discrimina-
tive representations from network traffic, causing a decrease in
accuracy across all tasks, with a particularly significant impact
on QoE inference tasks that rely more heavily on temporal
information.

Pre-training Targets: Our experiments demonstrate that the
four tailored pre-training targets are essential for constructing
a deep contextualized and discriminative representation of
network traffic. The complete absence of pre-training leads
to the most severe performance degradation, validating the
importance of universal domain knowledge obtained through
pre-training. MPR focuses on the semantic and structural
features of packet content, and SSP focuses on the semantic
relationship between packets and the structure of session flows.
The absence of both MPR and SSP results in comparable
levels of performance degradation, suggesting that intra-packet
features and inter-packet relationships hold similar importance
for network traffic understanding. The omission of HIP or SIP
both leads to a significant decline in the performance across
all tested tasks, with a particularly pronounced impact in QoE
inference tasks. This indicates that even for tasks that pri-
marily rely on static packet content, like traffic classification,
incorporating domain knowledge of network dynamics can still
significantly improve performance. For QoE inference tasks,
which heavily depend on the comprehension of the under-
lying network transmission processes, understanding network
dynamics is essential.

These results signify the importance of a comprehensive
understanding of network traffic, which includes both static
and dynamic elements, for effectively tackling the various
challenges associated with network traffic analysis tasks. The
pre-training phase equips the PTU with foundational network
domain knowledge, which is pivotal for achieving optimal
performance in downstream tasks.

Answer to RQ2: Experimental results demonstrate that the
components of traffic representation and each pre-training
target are indispensable for the superior performance of PTU.
These components are crucial in comprehensively and accu-
rately understanding network traffic.

D. Few-shot Learning Analysis

To assess the robustness of PTU in few-shot learning
scenarios, we deviate from the original 8:1:1 split ratio and
instead vary the proportion of training set from 10% to 90%
in increments of 10%. The results are presented in Fig. 2.
Experimental results demonstrate that in few-shot learning
scenarios, pre-trained models such as ET-BERT, YaTC, and
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Fig. 2: Few-shot Analysis
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Fig. 3: The effect of input length on inference efficiency of
PTU

PTU outperform other methods and exhibit less performance
degradation when facing the scarcity of labeled training data.
The self-supervised pre-training on large-scale unlabeled data
enables the models to learn the underlying structure and
universal patterns of network traffic, thereby diminishing their
dependence on the quantity of task-specific labeled data. PTU,
in particular, only exhibits a significant performance decline
when the proportion of training data is minimal, i.e., at 10%.
Even under these conditions, PTU maintains an accuracy level
above 90%, eliminating concerns about over-fitting. Further-
more, PTU consistently outperforms the other two pre-trained
models by approximately 10% in accuracy across all tested
tasks. This consistent lead in accuracy underscores PTU’s
superior performance and robustness, which can be attributed
to the universal and meaningful representations of network
traffic acquired through pre-training. These results suggest that
PTU can operate effectively even when the amount of labeled
training data is constrained, thereby substantially reducing its
deployment costs associated with data collection and labeling.
It is worth noting that a smaller number of training samples
also implies a reduced consumption of computational re-
sources. That is, the PTU can still maintain a high performance
with limited computility.

Answer to RQ3: The experimental results demonstrate that
PTU maintains high accuracy even with a limited amount
of labeled data, highlighting its exceptional robustness and
generalization ability. PTU exhibits a low dependency on the
quantity of labeled data, reducing data collection costs for de-
ployment and making it suitable for production environments.

E. Efficiency Study

The efficiency of a model, which refers to its inference
speed, significantly impacts its utility value. Low efficiency not
only makes the model unsuitable for real-time monitoring but
also substantially increases its consumption of computational
resources, thereby significantly increasing operation costs. The
efficiency of transformer-based models is primarily determined
by the input sequence’s length, as the attention operation’s
complexity is quadratic with respect to the length [45]. There-
fore, the impact of input length on the efficiency and accuracy
of PTU is investigated by truncating the input length to 2n

where n ranges from 1 to 10. The accuracy and average
inference time when the batch size is set to 1 is shown in
Fig. 3. The experimental results indicate that beyond an input
length of 256 bytes, further extensions show no significant
accuracy improvement. Conversely, longer input sequences
lead to a substantial increase in inference time, negatively
impacting PTU’s practical value. Based on these findings, we
select 256 bytes as the input sequence length for all other
experiments conducted in this paper.

With an input length of 256 bytes and a batch size of 1, PTU
can process 200 samples per second, whereas when the batch
size is increased to 32, which is used in all other experiments,
the PTU can handle approximately 3000 samples per second.
Building on this, experiments employing linear attention could
provide an additional acceleration of 3 to 4 times; however,
simple replacement leads to a certain degree of performance
degradation. Therefore, in this study, we opt to use the vanilla
attention.

Answer to RQ4: Extended input lengths enhance PTU’s
performance by providing the model with a more compre-
hensive context. On the other hand, longer input results in
a significant prolongation of the inference time, reducing the
model’s practicality. We select an input length of 256 bytes as
a compromise between accuracy and efficiency.

V. RELATED WORK

Network traffic understanding refers to analyzing, monitor-
ing, and interpreting data streams transmitted across networks.
This process involves extracting, analyzing, and comprehend-
ing information encapsulated within network traffic. To pro-
vide high-quality network services, a wide range of network
traffic understanding tasks must be undertaken, including in-
trusion detection, application classification and QoE inference.
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In general, methods of traffic understanding can be classified
into four categories: rule-based and signature-based matching,
statistical machine learning, deep learning methods, and pre-
trained models.

Rule-based and Signature-based Matching: These ap-
proaches involve extracting specific patterns and matching
them with predefined rules or pre-established signature li-
braries. A straightforward approach for identifying applica-
tions is through transport layer port numbers. Raimund et al.
[46] perform QoE inference by analyzing packets’ application
layer header information. Flowprint [39] generates fingerprints
for application classification based on IP addresses and other
elements. However, rule-based and signature-based matching
is highly dependent on plaintext information and faces chal-
lenges adapting to network environments’ growing complexity
and encryption.

Statistical Machine Learning: These methods begin by
extracting statistical features from network traffic and then
applying traditional machine learning algorithms, such as the
k-nearest neighbors and the random forest. AppScanner [4]
extracts forty flow-level statistical features and employs the
support vector machine for website classification. Requet [3]
constructs statistical temporal features from chunks and uti-
lizes the random forest to infer key QoE metrics for YouTube
video streams. Nevertheless, to accurately extract statistical
features, statistical machine learning relies heavily on the
large volume of labeled datasets, which can incur substantial
costs. Moreover, statistical machine learning requires a wealth
of expert knowledge to construct and select discriminative
statistical features for different scenarios, thus limiting their
generalization capability.

Deep Learning Methods: These techniques leverage ad-
vanced deep learning models, such as CNN and RNN, to
perform network traffic understanding tasks in an end-to-end
manner, eliminating the need for manually crafted features.
Deeppacket [10] applies one-dimensional CNN to directly
process packet payloads for service classification. ReClive [12]
employs LSTM to analyze temporal sequences of client GET
requests for QoE inference in video streaming. LSTM-QoE
[13] predicts the QoE of video streams using LSTM based on
temporal information such as the time elapsed since the last
play. However, these models depend heavily on large volumes
of labeled data to achieve satisfactory accuracy, significantly
increasing deployment costs. Additionally, they may have
limited generalization capability and require retraining or even
redesign when encountering new traffic patterns or novel
network traffic understanding tasks.

Pre-trained Models: The idea of pre-training has a long
history, such as word2vec [47]. Many studies have leveraged
the idea of pre-trained embedding vectors to address the
challenges of traffic understanding tasks. [48]–[52] ET-BERT
[23] introduces the concept of BURST and employing BERT
for encrypted traffic classification. Flow-MAE [24] and YaTC
[25] utilize the MAE from the field of computer vision to
encode entire flows for application identification. However,
these methods are limited to the features of static packet

content and neglect temporal information of the network
dynamics, such as packet inter-arrival times, routing paths, and
transmission delay, thus failing to address a broader range of
network traffic understanding tasks, e.g., QoE inference.

VI. LIMITATIONS AND FUTURE WORK

Currently, with a single consumer-grade GPU, the inference
speed of the PTU is approximately 2000 samples per second,
which significantly lags behind the core network’s requirement
of processing tens of millions of packets per second [53].
Moreover, the PTU introduces an additional delay of 5 ms for
each flow, which is non-negligible [54]. At present, applying
the PTU to the real-world core network is still challenging.

In future work, we plan to explore measures to accelerate
PTU, such as increasing the batch size, employing faster linear
attention mechanisms [55] and using faster backbone model
like TTT [56], to further improve the inference speed of PTU
while maintain its excellent performance. Additionally, we will
assess PTU’s capability for continuous learning in a production
environment where traffic patterns are constantly evolving. We
will also apply PTU to a broader spectrum of tasks, including
user behavior analysis, bandwidth allocation, and network fault
diagnosis to better illustrate PTU’s performance and versatility.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose the Pre-trained model for network
Traffic Understanding (PTU), a pre-trained model designed
for network traffic understanding tasks. PTU is pre-trained on
unlabeled large-scale task-agnostic data, acquiring deep and
unbiased representations of network traffic. The pre-training
process enables PTU to be fine-tuned on a limited amount
of labeled data and achieve exceptional performance across a
wide range of network traffic understanding tasks. The efficacy
of PTU is evaluated on two network traffic understanding
tasks: traffic classification and QoE inference. Experimental
results demonstrate that PTU surpasses previous methods and
achieves SOTA results in all tasks, showcasing its superior
performance and generalization ability.
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