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Abstract
Emerging technologies and applications make 

the network unprecedentedly complex and het-
erogeneous, leading the network operations to be 
costly and risky. The digital twin network (DTN) 
can ease these burdens by virtually enabling 
users to understand how performance changes 
accordingly with modifications. For this “What-if” 
performance evaluation, conventional simulation 
and analytical approaches are inefficient, inaccu-
rate, and inflexible, and we argue that data-driven 
methods are most promising. In this article, we 
identify three requirements (fidelity, efficiency, 
and flexibility) for performance evaluation. Then 
we present a comparison of selected data-driven 
methods and investigate their potential trends in 
data, models, and applications. We find that per-
formance models have enabled extensive appli-
cations, while there are still significant conflicts 
between models’ capacities to handle diversified 
inputs and limited data collected from the produc-
tion network. We further illustrate the opportuni-
ties for data collection, model construction, and 
application prospects. This survey aims to provide 
a reference for performance evaluation while also 
facilitating future DTN research.

Introduction
The endless pursuit for high-throughput and 
low-latency urges emerging technologies (e.g., 
5G, cloud computing, and edge computing) to 
be employed. Meanwhile, high-performance net-
work services, in turn, have spawned a batch of 
new applications (e.g., live streaming, virtual real-
ity, and cloud gaming). These technologies and 
applications make the network unprecedentedly 
complex and heterogeneous, leading to costly 
and risky practices on the physical network. In 
this context, a digital twin network (DTN) [1] can 
significantly ease the practitioners’ burdens. DTN 
is a virtual representation of the physical commu-
nication network that continuously updates with 
the latter’s performance, maintenance, and health 
status data. Unlike typical digital twin technologies 
that replicate physical objects, DTN is primarily 
concerned with the abstraction of network states 
and behaviors. DTN aims to build digital twins 
for universal communication networks and is not 
restricted to specific applications or contexts.

Network operators often desire to develop 
optimization techniques to improve network per-
formance, which mainly involves configuration 
tunning and new-policy exploration. New con-

figurations and policies must be fully verified 
before being deployed in physical networks. DTN 
can be used as a safe and cost-efficient environ-
ment for performance evaluation. Operators may 
explore and verify their new techniques in DTN, 
avoiding complicated and risky operations on 
physical networks. The optimization and other 
scenarios (below) demand performance evalua-
tion for “What-if” scenarios [2], which means the 
DTN can tell what the network performance is if 
there are alterations in influencing factors (e.g., 
traffic volumes, device configurations, routing 
schemes, and topologies).

Network performance evaluation has attract-
ed researchers’ interest for decades. Experiments 
(e.g., A/B testing) and measurements are two 
techniques for performance evaluation with physi-
cal production networks, which are both high-risk, 
high-overhead, and high-complexity for “What-
if” scenarios. In virtual environments, simulation 
and modeling are two fundamental approaches 
for “What-if” performance evaluation. Network 
simulators (e.g., NS-2, NS-3, OMNet++) process 
virtual packets under pre-defined mechanisms 
(e.g., congestion control algorithms and queueing 
policies) and generate performance metrics (e.g., 
throughput, delay, and loss rate), which allow the 
collection of arbitrary information without impact-
ing system behavior. Such packet-level simula-
tors are delicately designed and tightly coupled, 
leading to inefficient execution. The 3–4 orders 
of magnitude slower than real-time [3] determine 
that current simulators are unacceptable for DTN. 
Modeling is much different from simulation, which 
directly establishes the relationships between 
influencing factors and performance metrics. 
Conventional analytical modeling methods (e.g., 
network calculus, queuing theory) adopt Poisson 
Process to simplify the packet arrival and depar-
ture process, which cannot describe the incast [4] 
and leading to inaccurate estimation. Simulators 
are heavy, while analytics are formalistic, and both 
are inflexible towards rapid and continuous net-
work evolution.

With the renaissance of machine learning in 
recent years, data-driven techniques, especially 
neural networks (NNs), seem promising for DTN’s 
performance evaluation. Data-driven methods 
usually pre-define a series of possible mapping 
functions and utilize abundant data to determine 
a set of parameters (i.e., training) that accurately 
map the influencing factors to performance met-
rics. The mapping function is able to describe var-
ious relationships, which provides flexibility for 
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modeling complex network mechanisms. Trained 
data-driven models are lightweight and can effi-
ciently generate outputs with only one-time for-
ward computation. Researchers have developed 
specialized structures for specific tasks (e.g., con-
volutional neural networks for computer vision, 
recurrent neural networks for natural language 
processing) and applied techniques (e.g., regular-
izations and dropout) to solve the overfitting and 
generalization problems, making trained models 
reliable. With these advantages, data-driven meth-
ods can help to mitigate the inefficiency, inflexibil-
ity, and inaccuracy issues.

In this article, we identify three requirements 
(fidelity, efficiency, and flexibility) for network 
performance evaluation by investigating four typ-
ical network scenarios. Then we make a com-
prehensive comparison of selected data-driven 
performance models on data, models, and appli-
cations. The data utilized are diversified and 
mainly collected from simulation environments. 
The models develop from the classical-method 
stage, vanilla-NN stage to the customized-NN 
stage and strive to meet three requirements. 
Though enabled extensive applications, models’ 
practical usages are still rare, which indicates the 
significant conflicts between models’ powerful 
expression abilities and the shortage of practical 
data from the production environment. Based 
on the above, we further describe opportuni-
ties and challenges for performance evaluation 
from data collection, model construction, and 
application prospects. DTN is undergoing rapid 
development, and performance evaluation is 
essential for DTN’s construction. This article 
surveys network performance evaluation from 
a data-driven perspective. We hope that this sur-
vey will not only serve as a favorable reference 
for performance evaluation but also facilitate 
future research towards DTN.

Requirements for Performance Models

Scenarios and Requirements

Researchers have proposed a general DTN archi-
tecture [1] including three layers, as Fig. 1 shows. 
It needs to periodically collect the static data 
(e.g., topology, configurations) and continuously 
collect the runtime data (e.g., link utilization, traf-
fic volume) and populate them into DTN. DTN 
then reconstructs the internal relations of collect-
ed data to represent the physical network state, 
which enables the “What-if” ability. DTN will ben-
efit network practices by providing a real-time and 
zero-risk performance evaluation environment. We 
investigate four typical network scenarios of plan-
ning, operation, optimization, and upgrade to iden-
tify specific requirements for performance models.

In the planning scenario, designers need to 
ensure the planning network’s overall perfor-
mance meets the requirements of the given 
topology, configurations, and demand traffic. The 
model must generate performance results under 
different topologies, configurations, and traffic 
loads, which requires the model to be accurate 
on various inputs combinations.

When in operation, engineers hope to know 
about the real-time performance changes and 
quickly respond to potential anomalies. These 
anomalies must be quickly located or detect-
ed once they appear. Real-time monitoring and 
anomaly detection require the model to efficiently 
depict the physical network performance.

Network optimization usually involves configu-
rations tuning and new-policy exploration. Config-
urations and policies must be fully verified before 
being deployed in practice. The model is an ideal 
zero-risk environment to explore schemes and 
evaluate their performances under various scenar-
ios before deployment.

FIGURE 1. The digital twin network architecture.
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Network upgrade often includes topology 
changes and link expansions. Operators may won-
der how to change the topology and where to 
expand the bandwidth under a limited resource 
budget. The model needs to evaluate the per-
formance under changed topologies and link 
capacities and tell where the bottlenecks are to 
maximize the upgrade effectiveness.

From the above respects, there are three 
requirements (i.e., fidelity, efficiency, and flexibility) 
that a performance model must strive to achieve. 
Fidelity is the basic requirement that ensures accu-
racy for all scenarios. Efficiency is essential for oper-

ation and optimization because of real-time and 
frequent performance evaluation. Flexibility mainly 
means the model can evaluate performance with 
network changes, facilitating network planning, 
optimization, and upgrade. We further elaborate 
on three requirements as follows.

Requirements Elaboration
Fidelity: The fidelity shows how accurate the 
metrics from performance models are with the 
physical network. We divide the fidelity into three 
levels (i.e., long-term, short-term, and one-to-one) 
from the temporal perspective. Long-term rep-

TABLE 1. Comparison of selected data-driven performance models on data, models, and applications.

Groups Authors Year@Pubs Problem Scopes Data (Source, Inputs and Outputs) Models (name, techniques, etc.) Applications

Application 
Layer

Tariq et al., 2008@ 
SIGCOMM [2]

estimate service response 
time

S: Google’s global web-search CDN 
I: tcpdump data with many features (e.g., ¥tamp, region, RTT, 
response time) 
O: service response time distribution

WISE uses Causal Baysian Network Æ learn 
the causal structure and applies statistical 
intervention to predict the response time

evaluate the response time under 
“What-If” scenarios 

Sun et al., 2016@ 
SIGCOMM [9]

predict throughput
S:iQIYI’s operational CDN platform 
I: clientIP, ISP, AS, city and server 
O: throughput

CS2P learns the parameters of Hidden 
Markov Model (HMM) via expectation- 
maximization (EM) algorithm

predict throughput for video bitrate 
adaptation

Tranport 
Layer

Mirza et al., 2010@
ToN [10]

predict TCP throughput

S: laboratory WAN testbed 
I: transfer size and path properties (e.g., queuing delays, loss, 
available bandwidth) 
O: TCP throughput

Support Vector Regression (SVR) with Radial 
Basis as kernel function, {loss funciton is 
e-insensitive loss} with L2 regularization

predict end-to-end TCP throughput of 
wide area paths 

Nunes et al., 2014@
JWCN [11] 

estimate RTT of TCP 
connection

S: QualNet simulation
 I: three hyperparameters, measured RTT 
O: next RTT

online fixed-share experts learning with 
weights updated every trail, loss is a 
piecewise function

implemented inLinux kernel to 
estimate TCP RTT 

Geyer, 2019@ 
Performance Evaluation 
[12]

evaluate the performance 
of a topology

S: from simulation 
I: graph with nodes of flows and queue
O: throughput of TCP flows, end-to-end latencies of UDP flows

DeepComNet uses Graph Neural Network 
(GNN) with Gated Recurrent Units, loss 
function is MSE

predict average TCP flows bandwidths 
and UDP flows end-to- end latencies 

Suzuki et al., 2020@
ICOIN [13]

infer end-to-end delay

S: Fluid-based Simulator 
I: some delays of node-pairs and node features (e.g., indicator 
and degree)
 O: delays of other node-pairs

semi-supervised GCN learning with rectified 
linear unit andlogarithmic softmax classifier, 
loss function is negative log likelihood

infer delays of other node pairs from 
measured delays at some nodes. 

Zhang et al., 2021@ 
SIGCOMM [3]

model DCN clusters’ effects 
on packets.

S: OMNet++ simulation 
I: scalable features (e.g., number of racks per cluster, packet size, 
priority bits) 
O: packet latency in the cluster

MimicNet’s internal model uses LSTM model, 
loss fucntion is Weighted-BCE with Huber, 
two losses are weighted

scalable, faster, and tunable 
performance estimation for DCN 

Wang et al., 2022@ 
ŒFOCOM [6]

model network 
performance

S: NS-3 simulation
I: traffic, buffer size, ECN, topology, queue policy, routing scheme, 
etc.
O: path-/flow-level delay/throughput, FCT

xNet uses three NGN blocks to build the state 
transition model, L2 loss function is used

online QoS monitoring, “What-if” 
simulation, offline planning

Network 
Layer

Xiao, et al, 2018@
NetAI [8]

infer path delay and loss 
distribution

S: testbeds of DCN and WAN 
I: ports’ load matrix in every four seconds 
O: path delay and loss distribution in every minute

Deep-Q uses a variational auto-encoder 
(VAE) enhanced by the long short term 
memory (LSTM), loss function is Cinfer-loss

infer QoS metrics of given traffic 
matrix 

Mestres et al., 2018@ 
BigDAMA [14]

model end-to- end delay
S: OMNet++ simulation 
I: traffic matrix of various scenarios 
O: end-to-end delay matrix

neural networks model with different 
ameters, loss function is MSE with L2 
regularization

model end-to-end delay as function of 
traffic matrix 

Wang et al., 2018@ 
SIGMETRICS [15]

evaluate the performance 
of DCN topology

 S :customized flow-level simulator 
I: demand traffic matrix and topology configuration 
O: performance metrics score

xWeaver’s scoring module uses two 
convolutional neural networkwith a fully-
connected neural network, loss function is 
not mentioned

evaluate and infer the propertopology 
of given traffic 

Rusek et al., 2020@
JSAC [5]

model the path delay, jitter 
or loss

S: OMNet++ simulation I: topology, routing schemes, link 
capacities, and path steady traffic 
O: path mean delay, jitter and loss

RouteNet uses Message Passing Neural 
Network (MPNN) framework, loss is negative 
log likelihood

QoS-aware routing optimization, 
budget-constrained network upgrade 

Li et al., 2020@CN [7] model FCT Œ DCN
S: DiffservNetwork simulator 
I: flow size and start time, ToS, protocol, bandwidth, etc. 
O: FCT

GNN model (three Graph Networks blocks as 
encoder, core, decoder), loss function is MSE

flow routing and scheduling, topology 
management for trafficoptimization
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resents statistic results over a period of time, while 
short-term describes the detailed changes in time 
slots, and one-to-one precisely depicts every pack-
et of the physical network. Long-term steady eval-
uation requires the model to reasonably abstract 
the complex mechanisms, such as RouteNet [5] 
can represent arbitrary routing schemes. It further 
requires describing network conditions and tem-
poral dependencies to represent the short-term 
process, such as xNet [6] learning the state tran-
sition function between time steps. One-to-one 
means we must accurately model diverse mech-
anisms’ influence on each packet. MimicNet [3] 
keeps end-hosts function and models network 
clusters’ effects on packets, which takes the first 
step towards one-to-one modeling.

Efficiency: Efficiency stands for two parts: 
One is that performance models can be faster 
than the real-time physical network. The other is 
that models should be easy to deploy and con-
sume rational resources. Faster than the physi-
cal enables users to forecast performance and 
react in advance to tackle potential anomalies. 
Unlike simulators, it needs to simplify complex 
mechanisms and discard unnecessary details (e.g., 
packet payload, switching process) to speed up 
the evaluation. There is often a trade-off between 
the modeling granularity (e.g., packet-level [3], 
flow-level [6, 7], path-level [5, 8]) and speed, 
which are determined by the target problem set-
tings. The model needs to consider the trade-off 
and serve as a cost-effective backend to evaluate 
performance metrics.

Flexibility: The network is evolving rapidly. 
When topology, configurations, or mechanisms 
change, the model must accurately generate per-
formance metrics as well. We hope that the model 
can be iteratively upgraded towards new mecha-
nisms, which means the model must be flexible. 
There usually remain unchanged parts in a chang-
ing system, inspiring us to leverage layered or mod-
ular philosophies with the flexibility problem. Layers 
and modules are decoupled but orchestrated to 
function in one model, where we can separately 
construct every module. New mechanisms will not 
affect the whole model but only related modules, 
which can be either upgraded or replaced. Flexibil-
ity will accelerate the process of building an accu-
rate performance model.

Selected Performance Models

Advances Overview
Network researchers have shown great interest in 
data-driven performance modeling in the past ten 
years. We select some representatives and make 
a comprehensive comparison of problem scopes, 
data, models, and applications in Table 1. They are 
divided into three groups by applied layers. Exist-
ing approaches are developed under different per-
formance evaluation tasks where metrics include 
delay, throughput, loss rate, flow completion time 
(FCT), etc. Some works focus on performance 
inference or estimation, and others focus on per-
formance prediction. There are no significant differ-
ences between the two focuses, as they just mean 
the evaluation of current or future performance.

Data, model, and application are three main 
aspects of a data-driven approach. Data is essen-
tial to train the model, which is distinct from con-

ventional analytical or simulation approaches. To 
some extent, the available data in quantity and 
quality limits how accurate a data-driven model 
will perform. Meanwhile, models should be rea-
sonably designed, and a well-designed model can 
efficiently extract variables’ relations to construct 
itself. Researchers have also developed specific 
techniques on model architecture and loss func-
tion to obtain more accurate results. Most models 
are not only applied for targeted tasks but also 
leveraged for other scenarios, demonstrating the 
broad prospects of performance models.

From an overview, we summarize potential 
trends in data, models, and applications. The data 
utilized are diversified but mainly acquired from 
the simulation environment, indicating the major 
conflict between models’ ability to handle com-
plex inputs and the shortage of data collected 
from the production network. Diversified data 
can yield better fidelity and practical applications. 
Further, the leveraged techniques are advancing 
with machine learning development, resulting in 
more delicate models. With the stronger abstrac-
tion and powerful expressiveness, models’ fidelity 
and flexibility are improved. At last, these mod-
els have enabled extensive application scenari-
os for different layers, mainly including network, 
transport, and application layers. The lower the 
layer, the more detailed modeling abstractions 
are required. With the advancement of modeling 
techniques, there is roughly a tendency from high-
er to lower layer scenarios. Researchers also real-
ized the great potential of performance models 
and utilized them to solve problems that seemed 
to be challenging in the past, such as modeling 
the routing schemes [5]. Here we give a quali-
tative comparison of data diversification, model 
complexity, and application scenarios of selected 
models, as Fig. 2 shows.

Data Source, Inputs and Outputs
Data Source: Data source mainly involves sim-
ulation, testbeds, and production, where the 
measurement difficulty sharply increases. We 
notice that most of the selected works [3], [5–7], 
[11–15] are collecting data from the simulation 
environment. They often leverage packet-level 
or flow-level simulators, which are costless and 
relatively easy to deploy. Though various data are 
convenient to collect in such a restrained environ-
ment, the data fidelity may deviate from produc-
tion. Also, large-scale simulations with packet-level 
simulators may need a long time to complete.

Some works [8, 10] build testbeds to obtain 
data. Despite the high cost, testbeds are closer 
to the real environment and have fast speed. 
Researchers can collect abundant clean data 
from controlled testbeds. However, both simula-
tors and testbeds have problems with the traffic 
model. The flow patterns and distributions are 
hard to describe because of complex and diverse 
traffic behaviors. Without reliable traffic models, 
the credibility of collected data will reduce.

Data, model, and application are three main aspects of a data-driven approach. Data is essential to 
train the model, which is distinct from conventional analytical or simulation approaches. To some 

extent, the available data in quantity and quality limits how accurate a data-driven model will perform.
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Directly measuring data from production net-
works is wonderful, where simulation time and 
traffic model are not problems anymore. WISE [2] 
used tcpdump data from Google’s global web-
search content delivery network (CDN), and Sun et 
al., [9] used a proprietary dataset of HTTP through-
put measurement from the operational platform 
of iQIYI. Real data can bring higher credibility and 
enables the performance models to be deployed 
for practical usage. However, collecting plenty of 
consistent and clean data from the production 
environment is still costly. Specialized equipment 
and techniques are often needed to take measure-
ments. Even so, some metrics (e.g., queue length 
[4]) cannot be directly measured. High-precision 
time synchronization on devices also hinders accu-
rate measurements of time-related metrics.

Inputs: Inputs are various for different tasks. 
Some works [2, 5, 7, 9, 10] take multiple discrete 
or continuous variables as inputs. WISE [2] inspect-
ed a tcpdump dataset and found that a series of 
variables (e.g., timestamp, number of sent packets, 
client region, round-trip time (RTT), and response 
time) are responsible for service response time. 
Mirza et al., [10] proposed that incorporating path 
properties (e.g., queuing delays, loss, and available 
bandwidth) as inputs could improve history-based 
TCP throughput prediction. CS2P [9] picked a 
given set of features from all possible features 
(e.g., client IP, ISP, AS, city, and server) combina-
tions to aggregate session clusters. RouteNet [5] 
utilized path steady traffic under various topolo-
gies, routing schemes, and link capacities to infer 
the path delay and loss rate. Li et al., [7] took flow 
size, start time, type of service (ToS), protocol, 
and link bandwidth to model flow completion 
time (FCT). Though it introduces a heavier burden, 
diversified inputs will yield more accurate outputs 
and stronger generalization ability.

There are also works [8, 11–15] taking fewer 
features as inputs. Such works often focus on 
given scenarios and tackle specific tasks. Nunes 
et al., [11] and Suzuki et al., [13] only used mea-
sured metrics (RTT/delays to some nodes) to 
estimate homogeneous metrics (next RTT/delays 
to other nodes). xWeaver [15], Deep-Q [8], and 
Mestres et al., [14] preferred to use traffic matrix-
es to model end-to-end performance matrixes, 

where topology and other configurations were 
specified. DeepComNet [12] employed lower-lev-
el features (graph representation of topology 
and flows) to evaluate the average performance 
of network topology. Fewer input features can 
reduce the measurement costs and enable fast 
execution, improving efficiency under specific set-
tings.

Outputs: Outputs are performance metrics 
(e.g., RTT, delay, throughput, loss rate, and FCT) 
with fewer dimensions than inputs. The major-
ity of the works [5, 7, 9, 10, 12–15] aim to 
evaluate long-term average performance under 
steady-state. Mirza et al., [10] and CS2P [9] 
both predicted throughput in a period. xWeaver 
[15] and DeepComNet [12] both estimated the 
given topology’s steady performance. Mestres et 
al., [14] and RouteNet [5] both evaluated path 
mean delay, which reflected the overall path per-
formance under steady traffic. Suzuki et al., [13] 
inferred end-to-end delays of node pairs under 
persistent TCP flows. Li et al., [7] modeld FCT in 
DCN. Above long-term performance evaluation 
facilitated decision-making for target tasks.

Unlike the average metrics above, generating 
metrics distributions enables users to evaluate 
the performance from a probabilistic point. WISE 
[2] estimated service response time distribution 
under “What-if” scenarios and could provide the 
percentage guarantee for service level agree-
ment (SLA) requirements. Deep-Q [8] verified 
that some quality of service (QoS) metrics are not 
a scalar but a random variable. It inferred path 
delay and loss distributions over time intervals. 
Deep-Q also provided performance changes over 
time, which enabled dynamic performance eval-
uation from a temporal dimension. Nunes et al., 
[11] estimated the next RTT with past measured 
RTT. xNet [6] enabled temporal prediction on 
QoS inference and FCT. MimicNet [3] modeled 
latency on each packet. The temporal metrics 
reflect performance changes over time, enabling 
more valuable applications (e.g., QoS monitoring, 
anomalies detection, and exploring policies).

Model Selection and Customization
From an overview of model construction, we 
divide recent advances into three stages: classi-
cal-method stage, vanilla-NN stage, and custom-
ized-NN stage.

Classical-Method Stage: In this stage, classical 
methods (e.g., Causal Bayesian Network (CBN) 
and Support Vector Regression (SVR)) are adopt-
ed for performance modeling tasks. Though with 
fixed and straightforward forms, such methods 
have shown good performance for specific tasks. 
WISE [2] identified relevant features from vast 
variables and leveraged CBN to construct the 
causal structure of these features. Then it applied 
statistical interventions to changed features to esti-
mate response time under “What-if” scenarios. 
Mirza et al., [10] leveraged SVR with Radial Basis 
kernel function to predict TCP throughput. The 
loss function is e-insensitive loss with L2 regular-
ization. SVR has a solid theoretical foundation and 
is favored in practice for its excellent empirical 
performance. Nunes et al., [11] used lightweight 
Experts Framework to perform online learning, 
which showed high speed with reasonable accu-
racy. They developed a dedicated piecewise loss 

FIGURE 2. Qualitative comparison on data diversification, model complexity, and 
application scenarios of selected data-driven performance models.
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function to describe the error between prediction 
and measurement. CS2P [9] employed Hidden 
Markov Model (HMM) to capture the state-tran-
sition behaviors for similar clusters to predict 
throughout for video bitrate adaptation.

In this stage, classical data-driven techniques 
often have fixed forms and few empirical hyper-
parameters, where loss functions are easy to 
determine. Based on this, there is not much space 
to design particular architectures for specific tasks. 
Researchers need to abstract the problems and 
pay attention to feature engineering. These mod-
els are very efficient and have high fidelity when 
properly applied, while they may not be flexible 
for network evolution. With fixed forms, it is chal-
lenging for them to model complicated network 
mechanisms, leading to very limited applications.

Vanilla-NN Stage: With the development of 
computing technology and abundant available 
data, NNs bring data-driven techniques into a new 
era. NNs are adopted for network performance 
modeling as well, and this enables the vanilla-NN 
stage. xWeaver [15] and DeepComNet [12] 
both leveraged NN techniques to evaluate the 
performance of a given topology. xWeaver can 
explore optimal topology for given traffic, where 
a scoring module was used for evaluation. The 
scoring module used two Convolutional Neural 
Networks (CNNs) to extract information from traf-
fic and topology configuration separately, with a 
fully-connected NN to output the performance 
score. DeepComNet represented flows and 
queues as graph nodes. When a flow traverses a 
queue, an edge is connected with the flow node 
and the queue node. It then leveraged Gated 
Graph Neural Network (GGNN) to evaluate 
topology. Mestres et al., [14] wondered whether 
NN could accurately model the delay as a func-
tion of the input traffic. They evaluated NN with 
different hyperparameters (i.e., number of hidden 
layers, number of neurons per layer, the activation 
function, the learning rate, and the regularization 
parameter) and gave an affirmative answer. Suzu-
ki et al., [13] performed semi-supervised learning 
with Graph Convolutional Networks (GCN) to 
infer end-to-end delay. They modeled the prob-
lem as a classification question and used a log-
arithmic softmax classifier. RouteNet [5] utilized 
Message Passing Neural Network (MPNN) to 
model the relationships between links and paths, 
outputting the path mean delay, jitter, and loss. 
Li et al., [7] abstracted flows as graph nodes and 
links as graph edges. They input features of flows 
and links to the model, built with three Graph 
Network (GN) blocks, to output FCT.

The above works addressed problems with 
suitable NN techniques, where model structures 
and loss functions keep conventional. Emerging 
NN methods are directly adopted for specific 
tasks. Their inputs are usually structured (e.g., 
graph structure) and cannot be directly processed 
by classical techniques. These inputs have multi-
ple dimensions, enabling better flexibility for long-
term performance modeling.

Customized-NN Stage: Researchers have real-
ized that detailed performance modeling (e.g., 
short-time and one-to-one) is more valuable and 
practical. Deep-Q [8] first modeled path delay 
and loss distribution at time slots. They combined 
a variational auto-encoder (VAE) with the long 

short-term memory (LSTM). LSTM was used to 
extract information from sequences of traffic 
matrix, and VAE could generate metric distribu-
tions. A specially-designed Cinfer-loss module 
could measure the error of predicted QoS dis-
tributions, which enabled efficient and accurate 
training. MimicNet [3] provided over two orders 
of magnitude speedup compared to regular sim-
ulation for DCN of thousands of servers. It used 
a data-driven model to replace the complex and 
slow clusters in DCN while keeping the scalability, 
flexibility, and accuracy. For accurately modeling 
effects (drop, latency, ECN, etc.) on packets, they 
developed a loss function with Weighted-Binary 
Cross-Entropy (BCE) and Huber loss. xNet [6] pro-
vides a general approach to model the network 
characteristics of concern with graph representa-
tions and configurable GNN blocks. It learns the 
state transition between time steps and rolls it out 
to obtain the entire fine-grained prediction tra-
jectory. xNet used three Networking Graph Net-
works (NGNs) to build the state transition model 
and applied loss for state transitions.

These works modeled the network at a dynam-
ic view and provided higher fidelity, where inputs 
and outputs changed over time. They designed 
delicate NN models and adopted domain knowl-
edge for accurate modeling.

Applications Scenarios
In the beginning, there were not many applica-
tions for data-driven models. Many works [2, 
9–11, 14, 15] focused on single-metric modeling. 
These works were designed for specific tasks and 
were only used in the targeted scenarios. WISE 
[2] evaluated the service response time under the 
“What-if” scenarios. Nunes et al., [11] used online 
learning to estimate the RTT of a TCP connection. 
It could be implemented in the Linux kernel to 
improve the accuracy of RTT estimation. Mirza et 
al., [10] and CS2P [9] both predicted throughput 
under specific background for file transfer and 
video bitrate adaptation separately. Mestres et al., 
[14] verified that NN could accurately model end-
to-end delay as a function of the traffic matrix. 
They did not explore the use cases for applica-
tions. xWeaver [15] was dedicated to evaluating 
the performance of topology. It could be used 
to infer the proper topology for given traffic. 
Above all, we have seen very limited applications 
for these works. There may be multiple reasons 
behind in aspects of data collection and model-
ing techniques. Fewer inputs, single outputs, and 
specialized model is only valid for specific tasks. 
Researchers did not consider applying these mod-
els for more scenarios.

With the advances of various NN techniques, 
models are becoming more powerful. Extensive 
applications have been proposed for related 
works [3, 5–8, 12, 13]. Deep-Q [8] hoped to infer 
performance metrics directly from traffic statistics 
in real-time. It could also be used for performance 
optimization. DeepComNet [12] was designed 

With the development of computing technology and abundant available data, NNs bring data-driven 
techniques into a new era. NNs are adopted for network performance modeling as well, and this 

enables the vanilla-NN stage.
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to evaluate the performance of topology. Engi-
neers could leverage DeepComNet to predict 
TCP bandwidth or UDP end-to-end latency for 
network planning. RouteNet [5] set an excellent 
example in applying the model for multiple use 
cases. They modeled path mean delay, jitter, and 
loss, which are used for QoS-aware routing and 
budget-constrained network upgrades. Li et al., 
[7] also showed multiple applications for traf-
fic optimization of flow routing and scheduling, 
topology management. MimicNet [3] enhanced 
the packet-level simulator and provided scalable, 
faster, and tunable performance evaluation for 
DCN. xNet [6] proposed a modeling framework 
and demonstrated three use cases of online QoS 
monitoring, simulation of “What-if” scenarios, and 
network planning. It is evident that data-driven 
models have more extensive applications than 
ever before. Generalized data-driven methods 
have reduced the difficulties of traditional prob-
lems with accurate, flexible, and efficient model-
ing techniques.

Challenges and Opportunities
Data-driven performance evaluation is rapidly 
advancing, and multiple applications will benefit 
from it. Despite the bright prospects, there are still 
many obstacles to conquer with opportunities lying 
behind. We conclude challenges and opportunities 
with respect to data collection, model construction, 
and application prospects as follows:

Data Collection
Available data for training strongly affects the 
accuracy and generalization of learning models. 
Data from production networks often with higher 
value but the amount and types are limited. Real 
data for training will introduce a practical model 
for deployment, such as WISE [2]. At the same 
time, diverse data need to be collected under 
various configurations, which is unrealistic in the 
production network. Simulation environments 
may be a good alternative to solve the problem 
of accuracy and diversification. However, such 
simulations are often time-consuming. In addition, 
there is often a gap between simulated data and 
real data, hindering trained models from applying 
to production. Data-driven techniques have been 
widely developed in broad fields, where general 
datasets and benchmarks contribute a lot, while 
there are still no widely recognized datasets and 
benchmarks for networking.

Experiments, measurements, and data-driven 
methods are all promising for these problems. 
Engineers may need to utilize specialized tech-
niques (e.g., high-precision time synchroniza-
tion, in-network telemetry) and equipment (e.g., 
sketch-related) to accurately measure valuable 
data in production [4]. Meanwhile, various 
data-driven techniques are helping to mitigate 
the problem too. Network domain knowledge 
can be imposed on a few measured data for aug-

mentation. Other learning techniques with fewer 
data are also proposed, such as few-shot learn-
ing and self-supervised learning. Transfer learning 
may help to transform the simulation-data trained 
model into a practical model with little real data. 
Data-driven networking is evolving rapidly, and 
we are confident that standard datasets and 
benchmarks will be formulated and bring signifi-
cant promotion to this exciting field.

Model Construction
Data-driven models need to reflect the complex 
mechanisms of the network. There are both glob-
al and local, spatial and temporal relations of 
network entities, and they tangle together. Con-
gestion control algorithms, queueing policies, 
routing schemes, etc., all have essential impacts 
on network performance. Congestion control 
algorithms function at flow-level but global, where 
both end-hosts and in-network information are 
utilized. Queuing policies schedule packets in the 
local switching node, influencing the end-hosts 
behaviors. Routing schemes manage flows at the 
path level, which has significant effects on traf-
fic distribution. In addition, these mechanisms 
are time-sensitive (i.e., current state changes will 
impact future states). How to accurately model 
the global and local, spatial and temporal mech-
anisms are still challenging. We also notice that 
data-driven models often consume many resourc-
es on data collection, training, tuning, etc. It is not 
trivial to ultimately construct such a model from 
the blank.

We advocate using the modular or layered 
conception, and analytical-NN combined cogi-
tation to ease the complex modeling problem. 
The tangled mechanisms can be decoupled using 
modular or layered parts that may be built and 
updated independently. Analytical methods can 
also be introduced to enable higher accuracy and 
efficiency, which are often derived from domain 
knowledge. Current data-driven models are devel-
oped separately, while a foundation model might 
be quite beneficial. Pre-trained foundation models 
can serve as a backend and we only need to fine-
tune it for specific tasks. The foundation model 
for performance evaluation is similar to Trans-
former for natural language processing, which can 
provide universal and basic modeling ability. The 
challenges for constructing foundation models 
are the complicated model constructions and the 
universal abstraction of network mechanisms. A 
potential method is to describe the network as 
packets sequences, where various mechanisms 
can be viewed as impactions on the interval time 
between packets. We are yearning for all kinds of 
foundation models to appear in the near future.

Applications Prospects
Data-driven methods have advantages over con-
ventional methods in efficiency, fidelity, and flex-
ibility, which conducts great potential for the 
optimization of network configuration. Search-
based optimization policies will be promoted with 
faster evaluation speed. What’s more, temporal NN 
models can efficiently make sequential evaluations, 
thus enabling model-based control optimizations. 
With the model faithfully evaluating networks’ 
performance, the DTN can provide a high-fidelity 
dynamic environment. Reinforcement learning (RL) 

Data-driven performance evaluation is rapidly advancing, and multiple applications will benefit from it. 
Despite the bright prospects, there are still many obstacles to conquer with opportunities lying behind. 

We conclude challenges and opportunities with respect to data collection, model construction, and 
application prospects as follows.
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techniques are often employed for network deci-
sion-making. The RL agent needs to perceive states 
from the environment and make specific actions to 
maximize rewards. The virtual dynamic DTN envi-
ronment is an ideal playground for RL algorithms 
to safely explore new policies. There are also 
emerging technologies (e.g., Artificial Intelligence 
for IT Operations (AIOps), Self-driving Networks) 
to alleviate engineers from heavy manual operation 
works, where DTN can serve as an exploration and 
verification environment.

Conclusion
Though there are many challenges ahead, we 
will ultimately achieve the DTN technology with 
continuous research, and we are currently taking 
the first step. The DTN’s essential feature is the 
“What-if” ability, and the performance modeling 
plays a critical role. Conventional simulation and 
analytical approaches are inefficient, inaccurate, 
and inflexible, and we argue that data-driven 
methods are the most promising to build the per-
formance model. Researchers have proposed a 
few methods of data-driven performance evalua-
tion, while systematic summaries are still missing. 
This article surveys selected data-driven perfor-
mance models from data, models, and applica-
tions perspectives. The data utilized are mainly 
collected from simulation environments, and the 
models develop from the classical-method stage, 
vanilla-NN stage to customized-NN stage. Though 
enabled extensive applications, models’ practical 
usages are still rare, which indicates the significant 
conflicts between models’ powerful expression 
abilities and the shortage of practical data from 
the production environment. We believe that stan-
dard datasets and benchmarks will be formulated, 
and foundation models will appear to promote 
this exciting field. We anticipate that this survey 
will not only serve as a favorable reference for 
performance evaluation but also facilitate future 
research towards DTN.
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