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Abstract— Switch buffer serves an important role in the
modern internet. To achieve efficiency, today’s switches often use
on-chip shared memory. Shared memory switches rely on buffer
management policies to allocate buffer among ports. To avoid
waste of buffer resources or excessive buffer occupation by
a few ports, existing policies tend to maximize overall buffer
utilization and pursue queue length fairness. However, blind
pursuit of utilization and misleading fairness definition based
on queue length lead to buffer occupation with no benefit to
throughput but extends queuing delay and undermines burst
absorption of other ports. With analysis of current dynamic
threshold policies, we demonstrate that meaningless buffer occu-
pation can potentially impair the absorption capability of shared
buffer, whereas none of the existing policies have addressed
this problem. We contend that a buffer management policy
should proactively detect port traffic and adjust buffer allocation
accordingly. In this paper, we propose Traffic-aware Dynamic
Threshold (TDT) policy. On the basis of the classic dynamic
threshold policy, TDT proactively raises or lowers port threshold
to absorb burst traffic or evacuate meaningless buffer occupation.
We present detailed designs of port control state transition and
state decision module that detect real-time traffic and change port
thresholds accordingly. Simulation and DPDK-based real testbed
demonstrate that TDT simultaneously optimizes for through-
put, loss and delay, and reduces up to 50% flow completion
time.

Index Terms— Shared memory switches, buffer management,
dynamic threshold, traffic-aware design.

I. INTRODUCTION

SWITCH buffer is used to absorb burst traffic and improve
the overall performance of the switch. Insufficient buffer

results in reduced port throughput [1], thereby impairing the
network quality of service [2]–[4]. To achieve high buffer
efficiency, the majority of today’s switches adopt on-chip
shared memory, instead of private memory that exclusively
allocated for each port [2], [5]–[7].

Shared memory switches rely on specific buffer manage-
ment policies to allocate buffer among different ports [2].
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Without buffer management policies, a few ports can occupy
as much as the entire shared buffer space, blocking other ports
from benefitting from the shared memory, resulting in severe
unfairness between switch ports [7]. To avoid unfairness, the
simplest way is to split the total buffer evenly and allocate it
as private buffer for each port. However, the problem is that
ports only have access to their exclusive buffer space. This
limits buffer utilization when only a few ports are active, which
is against the basic principle of shared memory that buffer
should be dynamically shared among ports. For a long time,
researchers have believed that the ideal buffer management
should be somewhere in between complete sharing (no control)
and complete partitioning (evenly split), with high buffer
utilization as well as port fairness [7]–[9].

Many buffer management policies have been proposed in
the past three decades [7]–[15] to allocate buffer in shared
memory switches. Although the design concepts and methods
of different schemes are diverse, the design goals of these
schemes are basically consistent, that is, pursuing the highest
possible buffer utilization, reducing packet loss, maximizing
throughput, while ensuring queue length fairness between
ports. Since being proposed over twenty years ago, the
dynamic threshold (DT) [7] policy has been used as the default
buffer management scheme by switch manufacturers [2] and in
various congestion control related researches [5], [16]. Besides
several variants of DT [8]–[10], no significant progress had
been made in this research area.

Existing buffer management policies fail to make full use of
the shared buffer due to misleading optimization goals: buffer
utilization [8] and queue length fairness [7]. More specifically,
when long-lived over-line-speed traffic arrives at a switch port,
blind pursuit of buffer utilization leads to buffer occupation
that does not contribute to port throughput but extends queuing
delay. On the other hand, misleading fairness definition based
on queue length impedes meaningless buffer occupation from
being evacuated, impairing burst absorption capability of other
ports through additional buffer. Besides, queue length fairness
ignores the demand difference between different ports. In other
words, fairness in queue length is not equivalent to fairness in
throughput.

Analysis of current dynamic threshold policies further
demonstrates that buffer occupied by long-lived traffic not
only is non-beneficial but potentially impairs the absorption
capability of shared buffer, which is the fundamental function
of buffer. When port traffic arriving rate is sufficiently fast,
as a result of line rate limitation, buffer occupation might not
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be evacuated in time, causing performance degradation of the
shared memory.

In light of the limitations of existing buffer management
policies, we aim to propose a buffer management policy
that optimizes for metrics that actually have impacts on the
quality of service, i.e., throughput, loss and delay. To design
such policies, we first put forward the design principles of
traffic-aware buffer management that a policy should be able
to allocate buffer based on the real-time traffic status of the
ports. Designing a traffic-aware buffer management policy can
be challenging because it requires switch ports to proactively
detect port traffic and adjust buffer allocation accordingly.
More specifically, switch ports have to determine the type of
traffic it is transmitting in a timely manner with limited port-
level information.

In this paper, we propose Traffic-aware Dynamic Thresh-
old (TDT), a buffer management policy that controls the
buffer allocation of shared memory switches by detecting port
traffic status in real-time. TDT can fully utilize the shared
buffer to absorb burst traffic, avoid meaningless buffer occu-
pation through proactive evacuation, and ensure throughput
fairness among ports at the same time. By using buffer only
when needed, TDT is friendly to loss-sensitive burst traf-
fic, throughput-sensitive long-lived traffic, and delay-sensitive
short traffic in different switch ports simultaneously.

TDT uses a set of port-wise control states to differentiate
the status of different ports, and impose different thresholds to
individual ports accordingly. The transition between different
port control states is determined by a state decision module
that detects port traffic in real-time. The state decision module
of TDT is only composed of several counters, comparators
and triggers, avoiding dependency on the assumption of time
variables. When port traffic changes, TDT proactively raises or
lowers port threshold according to port control state to allocate
buffer among different ports in a dynamic manner.

We evaluate TDT with ns-3 simulation and a DPDK-based
switch prototype, comparing TDT with existing buffer man-
agement policies. Simulation results demonstrate that when
long-lived over-line-speed traffic exists, TDT can absorb
∼60% additional burst traffic while maintaining a similar
overall throughput and reducing overall queuing delay in the
switch, compared with current policies. Experiments on real
DPDK testbed show that TDT reduces 12% average flow
completion time (FCT). Specifically, TDT outperforms DT
over 80% of the time and has an up to 50% reduction in
FCT. In summary, we make the following contributions:

• Propose the design principles of traffic-aware buffer man-
agement. To the best of our knowledge, it is the first
time the idea that buffer management of shared memory
switches should consider proactive evacuation has been
proposed (§IV).

• Perform elaborate analysis on current dynamic threshold
policies to verify the adverse effect of meaningless buffer
occupation (§III).

• Design TDT, our proposed version of traffic-aware buffer
management and its detailed design of threshold determi-
nation based on port-wise control states and state decision
module (§V).

Fig. 1. The architecture of a shared memory switch.

• Conduct comprehensive evaluations on TDT, along with
existing buffer management policies with large-scale sim-
ulation and real DPDK testbed implementation (§VI).

The rest of this paper is organized as follows: §II introduces
the background of our research and limitations of current
buffer management policies. §III analyzes the deficiencies
of current policies to emphasize the need for traffic-aware
buffer management. §IV overviews the key design ideas
of traffic-aware buffer management. §V presents the design
details of TDT, our proposed version of traffic-aware buffer
management. Evaluations based on simulation and DPDK
testbed are presented in §VI. §VII discusses the advantages
and limitations of this study. Previous researches related to our
work are introduced in §VIII and §IX concludes this paper.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce shared memory switches
and current buffer management policies, with a special focus
on widely used dynamic threshold policies. Then, we pinpoint
the limitations of existing strategies, i.e., blind pursuit of uti-
lization and misleading definition of fairness, which motivate
our research.

A. Background
Shared Memory Switch: Figure 1 shows the architecture of

a typical shared memory switch. In the context of this paper,
we focus on output-queued shared memory switches with
high speedup switch fabric that can process packets from any
input port in negligible time and send them to the designated
output port queue [6]. To achieve high buffer efficiency, every
output port can access the shared memory pool which means
theoretically any single port can use as much as the entire
buffer space. In practice, shared memory switches rely on
specific buffer management policies deployed on a control
module (e.g., state decision module in Figure 1) to allocate
buffer among output ports.

Buffer Management Policies: Several buffer management
policies [7]–[15] have been designed to allocate buffer among
ports in shared memory switches. Current policies have two
main design goals. First, buffer should be fairly distributed
among different ports, i.e., no port is “starved” because a
few ports have occupied too much buffer space [7]. And
second, buffer utilization should be as high as possible, i.e.,
free buffer space when packets are dropped should be as small
as possible [8].
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In general, existing buffer management policies can be
divided into two categories: preemptive policies and non-
preemptive policies. For preemptive policies [13], [15], packets
that are already in the memory can be overwritten, or “pushed
out”, by newly arrived packets. Preemptive policies have
been proved to be optimal in certain circumstances [13],
[15] whereas they are too hard to implement in practice due
to hardware limitations [7], [8]. On the other hand, non-
preemptive policies [7]–[12], [14] that only allow packets
to be dropped before entering the port queue, are more
suitable to be deployed on existing devices. To achieve
fairness, non-preemptive policies often use threshold(s) to
restrict the amount of buffer each port can access. In this
paper, we only consider non-preemptive policies in design for
practicality.

Specifically, in data center networks, buffer management
policies are essential in utilizing buffer to absorb microburst
traffic. Previous works [17], [18] have demonstrated that fast
and short microburst is ubiquitous in data center networks.
Microburst traffic may be caused by TCP synchronization
and/or fan-in traffic pattern [19]. Typical microburst traf-
fic exhibits an ON-OFF pattern in the order of microsec-
onds to milliseconds. This type of traffic often carries
delay-sensitive short messages [20] therefore a buffer man-
agement policy should strive to absorb microbursts as much as
possible.

Dynamic Threshold Policies: Among a wide variety of
non-preemptive policies, dynamic threshold policies [7], [8],
[10] are most widely used by switch vendors [2] due to
their simplicity of deployment. In dynamic threshold policies,
the queue length of every switch port is restrained by its
corresponding threshold, which dynamically changes with
switch status indicators (e.g., remaining buffer space). Classic
dynamic threshold scheme (DT) [7] sets its threshold, shared
by all ports, proportional to the current amount of unoccupied
buffer space. More specifically, the threshold at time t can be
calculated by (1).

T (t) = α · (B −
∑

i

Qi(t)) (1)

where T (t) is the threshold at time t, B is the total buffer
size, Qi(t) is the queue length of port i at time t, and α is
a control function normally set to a constant value (usually
a power of 2) for simplicity. To avoid unfairness when traffic
changes, DT reserves a certain amount of buffer in the “stable”
state (i.e., the state of port when its queue length is equal to
the port threshold).

On the basis of the classic dynamic threshold scheme,
in recent years, researchers have proposed several variants to
cope with specific problems in networking. A typical one is
the Enhanced Dynamic Threshold (EDT) [8]. EDT analyzes
the buffer waste of DT when transmitting microburst traffic
and improves the burst absorbing ability of DT by temporally
relaxing the threshold restraint. EDT defines ports that are
under the restriction of shared threshold as “controlled” and
ports that are not as “uncontrolled”. With this definition, port
thresholds of EDT can be calculated by (2). For design details

of EDT, please refer to [8].

T (t) =

⎧⎨
⎩

α · (B −
∑

i

Qi(t)), if port is “controlled”

B/n′, if port is “uncontrolled”
(2)

where Ti(t) is the threshold of port i at time t and n′ is the
number of “uncontrolled” ports.

Although dynamic threshold policies have made huge suc-
cesses in the past decade, we will demonstrate the limitations
of existing dynamic threshold policies in the next part.

B. Motivation

The optimization goal of current buffer management strate-
gies is to maximize total throughput, minimize overall packet
loss while maintaining port fairness [7], [8], [10], [15]. In order
to optimize the metrics above, current policies focus on
maximizing buffer utilization and fairness based on queue
length, for the reasons that “drop packet only when inevitable”
intuitively means fewer packet losses, and “different queue has
similar chances to reach the same queue length” intuitively
equals to fair buffer distribution among different port queues.

Unfortunately, neither of these intuitions holds. In the
following, we show why blindly pursuing buffer utilization
or using queue length to measure fairness results in mean-
ingless buffer occupation, which further leads to performance
degradation.

Blind Pursuit of Utilization: Existing buffer management
schemes contend that buffer should be as full as possible
when switch port is overloaded, otherwise buffer is not fully
utilized [7], [8], [12]. This opinion comes from an ancient
cognitive habit that if resources are not used, they are wasted.
However, resources not wasted are not equivalent to resources
that are beneficial. Due to the line rate limitation of the
switch ports, switch buffer management is a problem in
which the law of diminishing marginal utility [21] is very
obvious. For an overloaded port (i.e., a port transmitting an
aggregate flow whose rate is over port line rate), throughput
is limited by port line rate instead of available buffer. In that
case, additional buffer allocated for this port brings little
benefit to overall throughput. Although high buffer utilization
in this particular case does not directly lead to throughput
degradation, when multiple ports are competing for buffer,
high utilization potentially impairs the absorption capacity of
ports that became active later. We will further demonstrate
this kind of performance degradation caused by meaningless
buffer occupation is indeed possible in §III. On the other
hand, maintaining high buffer utilization results in longer port
queues, which prolongs the queueing delay of delay-sensitive
packets.

Misleading Definition of Fairness: Fairness is one of the
most important considerations when designing a buffer man-
agement policy. Current policies either use descriptive defin-
itions of fairness [7] or use the queue length of competing
ports to measure fairness [8]. A buffer management scheme
is considered fair if different ports that start active at different
times can achieve similar queue lengths. Under this definition
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Fig. 2. Queue length fairness is not equivalent to throughput fairness. Equal
queue length threshold shared by ports with different throughput demand
causes unfairness in throughput.

of fairness, the fairest allocation strategy is evenly split, i.e.,
the shared buffer pool is equally distributed among all output
ports as private buffer. However, the above fairness description
ignores the difference in demand between ports and only limit
the fairness of the queue length, an intermediate variable,
without considering the fairness of metrics that actually make
a difference in terms of quality of service (e.g., throughput).
For example, Figure 2 shows a simple example generated by
simulation where two ports with different flow rates compete
for the whole buffer space. With the fairness definition based
on queue length, the resource (buffer) should be equally
divided between these two ports. Port A receives full additional
throughput with the help of buffer while port B can only
partially benefit from the buffer. Obviously, relative to the
ideal throughput, port B is affected more than port A, as a
result of buffer allocation. Therefore, in terms of throughput,
fairness measurement based on queue length is not always fair.
This misleading definition of fairness has caused unnecessary
restrictions that impede necessary buffer evacuation in the
design of existing schemes. In light of the reasons above,
in this paper we will directly use throughput as a measure
of fairness. Specifically, we define the throughput fairness as
the fairness of how much additional throughput different ports
gain from the shared buffer. We will explain this notion in
detail in §VI.

Meaningless Buffer Occupation: As a result of blind pursuit
of utilization and misleading definition of fairness, current
strategies maintain relatively longer queues in active ports,
keeping average queue length at a high level. However, as dis-
cussed above, buffer occupation is not a sufficient condition
for neither high throughput nor fairness. On the contrary,
maintaining long port queues undermines the overall capacity
of the switch to absorb potential burst traffic, and extends the
overall queuing delay of the switch [5]. Therefore, reducing
meaningless buffer occupation is a vital step toward better
buffer management policies. In order to achieve that, a buffer
management policy needs to be able to determine whether
or not the buffer occupation at a specific time is beneficial.
In conclusion, there is an urgent need for a buffer scheduling
strategy that can perceive changes in the traffic status of switch
ports and take actions accordingly.

III. ANALYSIS OF DYNAMIC THRESHOLD POLICIES

As discussed in §II-B, without traffic-aware ability, current
dynamic threshold policies suffer from meaningless buffer

TABLE I

NOTATIONS USED IN THIS PAPER

occupation. We have argued that such sort of buffer occu-
pation is non-beneficial. To further emphasize the need for
traffic-aware buffer management, in this section, we use ana-
lytical methods to illustrate how meaningless buffer occu-
pation can cause performance degradation by impairing the
fundamental function of buffer, that is, absorbing burst traffic.

In this section, consider the following scenario. A switch
with P output ports sharing a total amount of B buffer
space. Before t = t0, there are N ports with the same
transmitting rate R in “stable” state, i.e., queue length of
those ports is equal to their corresponding threshold thus
remains constant. At t = t+0 , another M previously inactive
ports start transmitting burst traffic, also with the same rate
R. We want to analyze the switch’s capability to absorb
the burst traffic transmitting over the M newly active ports
under different dynamic threshold policies, namely DT [7] and
EDT [8] introduced in §II-A. Notations used in the analysis
are summarized in Table I.

For dynamic threshold policies, when new ports become
active, queue lengths of existing “stable” ports decrease.
Attributed to the fact that the maximum queue reduction rate
is limited by link capacity, there are two different scenarios
distinguished by port traffic arriving rate Ri. As demonstrated
in Figure 3 (where M and N are set to 1 for simplicity),
when traffic arriving rate is relatively small, the queue length
reduction of existing queues (Qn) matches the reduction of
threshold, which is proportional to the queue length increase of
newly active ports (Qm). Conversely, if traffic arriving exceeds
a certain value, the queue length reduction rate is restrained by
port line rate so that it cannot match the threshold reduction
rate. In the following, we will discuss these two scenarios
case-by-case.

1) R ≤ C (1 + 1+αN
αM )

In this case, queue lengths of the existing N active ports will
decrease alongside the threshold. For DT [7], queue lengths
of newly active ports will not be restricted by the threshold
until t1 and therefore the maximum duration of burst traffic
that can be absorbed by DT in this case is t1. Then, according
to [7], t1 can be calculated by (3),

t1 − t0 =
αB

[1 + α(M + N)] (R − C)
(3)

making the sufficient condition for burst traffic to be fully
absorbed by DT follows (4).

(R − C) · di ≤ αB

1 + α(M + N)
(4)
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Fig. 3. Queue length and threshold evolution of dynamic threshold policies
under different traffic rate R.

With DT, the absorbing capacity is limited by the shared
threshold to make sure a proportion of headroom of buffer
will always be reserved.

On the other hand, without the restriction from the shared
threshold, EDT [8] allows ports transmitting burst traffic
access as much as the entire buffer space. Therefore, the
complete absorption condition for EDT is

(R − C) · di ≤ B

M
(5)

Clearly, in this case EDT always outperforms DT, as

αB

1 + α(M + N)
≤ B

M + N
≤ B

M
(6)

In fact, B/M is the ideal upper bound of burst absorption
capacity in this case, as all the buffer space has been leveraged
to absorb burst traffic.

We can conclude that for the first case, notwithstanding
the fact that DT is subject to the negative effect from
shared threshold restriction, EDT performs nearly impeccably.
No performance degradation has been manifested so far, and
this leaves us with the second case.

2) R > C (1 + 1+αN
αM )

In this case, the rate of queue reduction is unable to match
that of threshold reduction. This means buffer occupied by the
N active ports starting to play an important role.

In this scenario, queue lengths and threshold evolution of
DT is shown in Figure 3(b) and the queue lengths of M
newly active ports reach threshold in time t2. [7] has given
the expression of t2 as

t2 − t0 =
αB

(1 + αN) [(1 + αM)(R − C) − αNC]
(7)

Then the sufficient condition for a burst with duration di

to be fully absorbed by DT in this case can be calculated as
follows.

(R − C) · di ≤ αB(R − C)
(1 + αN) [(1 + αM)(R − C) − αNC]

(8)

For EDT, buffer that can be used by ports transmitting burst
traffic is still not under the constraint of the shared threshold.
However, this does not mean that EDT can use the entire buffer
space as earlier. The buffer access of newly active N ports
might be blocked by not yet evacuated buffer occupation and
those ports will be compelled to drop packets in bursts on
account of buffer overflow. The sufficient condition for packet
dropping by buffer overflow is

M(R − C)d >
B

1 + αN
+ NCd (9)

where M(R − C)d is the queue length increase in burst
duration d, B

1+αN is the remaining free buffer space when
there are N ports in “stable” state. And NCd is the queue
length reduction during d with port line rate C, i.e., the extra
buffer space from evacuation.

Now we verify that condition in (9) is possible in practice.
The following inequality relations

R > C(1 +
1 + αN

αM
) > C(1 +

N

M
) (10)

which can be deformed as

M(R − C)−NC > 0 (11)

indicating that the condition in (9) is possible.
The total amount of buffer also imposes restriction on burst

duration. Free buffer space can never exceed the total amount
of shared buffer B.

B

1 + αN
+ NCd < B (12)

In conclusion, with the overflow flow condition from (9)
combing with the additional restriction of total buffer
from (12), the sufficient condition for burst traffic to be
absorbed by EDT are

[MR − (M + N)C] d ≤ B

1 + αN
(13)

and

d ≤ αB

(1 + αN)C
(14)

Remarks: Although EDT is a policy specially designed for
absorbing burst traffic, and it does perform better than DT in
both cases above, in the second case we have found that it
is not always able to fully utilize the shared buffer space in
some circumstances because of pre-existing buffer occupation.
When the traffic rate of a burst is sufficiently large, which is
often the case as “incast” scenarios are common in networking,
buffer occupation caused by the restriction of line rate plays
a non-negligible role and buffer overflow occurs before com-
plete absorption. Recall from §II-B that buffer occupation in
such circumstances is non-beneficial, analysis in this section
has further demonstrated that none of the current dynamic
threshold policies can efficiently address the meaningless
buffer occupation problem that undermines the functionality of
buffer. It seems logical that a better buffer management policy
should be traffic-aware, with the ability to detect burst traffic
that arrives and departs as well as long-lived traffic causing
buffer occupation, and then make buffer allocation decisions
accordingly.
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IV. TRAFFIC-AWARE BUFFER MANAGEMENT

Discussion in §II-B and analysis in §III have shown that
the key factor causing performance degradation is buffer
occupied by ports overwhelmed by long-lived traffic. Solving
this problem requires a buffer management policy that can
perceive and determine whether a switch port is transmit-
ting long-lived flows or short bursty flows. In this section,
we present the key design principles of traffic-aware buffer
management. By real-time traffic detection, a traffic-aware
buffer management policy is expected to fully utilize buffer
when absorbing burst traffic (§IV-A) or proactively evacuate
meaningless buffer occupation (§IV-B) when traffic changes.

A. Burst Absorption

In the context of this paper, burst traffic refers to fast
(transmitting at over the port line rate) but short (no longer than
switch buffering time1) flows that arrive at switch ports [18].
In other words, we only consider bursts that can be fully
absorbed given that they can monopolize all the buffer. Oth-
erwise, buffer management policies are futile for this flow
because no possible allocation can achieve lossless transmis-
sion. Burst traffic caused by “incast” scenario often carries
deadline-sensitive short messages [5], [20]. Retransmissions
triggered by packet loss will result in the service missing
its deadline [4], [22]. It can be concluded that this sort of
burst is loss-sensitive, therefore the optimization goal should
be lossless transmission. Once packet loss occurs the absorp-
tion fails and the number of packet losses, except zero, is
irrelevant.

For a single burst, buffer management policy should lever-
age as much as possible buffer space to avoid packet loss.
In this paper, we share a similar basic design idea to absorb
burst traffic as EDT [8]. When burst traffic arrives at a port,
port queue length should not be restrained by the dynamic
threshold. If the burst traffic transmission is completed or it
exceeds the buffer capacity, buffer management should quickly
react to traffic changes by putting the corresponding ports back
under the threshold control.

The most challenging part of the design is to determine
whether a port has started or finished transmitting burst and
anticipate whether buffer can fully absorb that burst. Traffic
detection is expected to be sensitive and accurate, otherwise,
the buffer management policy will not be able to change the
threshold in a timely fashion, resulting in inability to fully
absorb burst traffic or a single port occupying too much buffer
for too long.

Based on the above reasoning, we propose several condi-
tions for traffic status judgment. First, we define several traffic
states to represent typical port traffic status. When a port is idle
or transmitting under-line-speed traffic, it is “underloaded”.
An “Overloaded” port refers to a port that transmits short burst
flows. And a port transmitting long-lived over-line-speed flows
is called an “overwhelmed” port. Conditions for judgment of
port traffic state are listed as follows:

1Switch buffering time is the time switch can buffer packets arriving at the
line speed of the port, e.g 1MB buffer on a 16-port switch can be equivalently
expressed as 500us buffer per port with 1Gbps line rate.

• A port becomes “overloaded” when burst traffic arrives at
this port. When a port becomes “overloaded”, its queue
length increases while no packets are dropped [8].

• A port becomes “underloaded” when over-line-speed
traffic transmission has completed. When a port becomes
“underload”, there are consecutive packet dequeue events
between packet enqueue events.

• A port becomes “overwhelmed” when over-line-speed
traffic exceeds buffer capacity. Either buffer overflow
or consecutive packet drops can indicate a port being
“overwhelmed”.

Burst absorption only applies to “overloaded” ports.
Because extra buffer can only be of help when there is
a possibility to fully absorb burst traffic. Extra buffer is
needless to “underloaded” ports and useless to “overwhelmed”
ports. Burst absorption should be terminated as soon as an
“overloaded” port becomes “underloaded” or “overwhelmed”.
Port traffic state will be used to determine port control state.
Detail designs of port control states will be shown in §V-A.

B. Proactive Evacuation
When a port is transmitting long-lived over-line-speed traf-

fic, no amount of buffer can absorb the part of the traffic
that exceeds line speed. It is worth pointing out that typical
long-lived over-line-speed traffic is not common in switch as
the purpose of congestion control algorithm (CC) [5], [16],
[23]–[25] is to avoid continuous overload scenarios. As a very
recent census [26] have shown, TCP CUBIC [25] remains
the dominant TCP variant on the internet and undocumented
TCP variants have occupied a non-negligible proportion on the
internet, some of which may focus more on maximizing link
utilization when facing competition instead of maintaining a
relatively short queue like TCP BBR [24], making buffer occu-
pancy by long-lived traffic a reasonable concern. In the context
of this paper, long-lived traffic is a relative concept, which
refers to aggregated flows whose duration exceeds switch
buffering time. It is possible that when multiple large flows
share a bottleneck link, their aggregated fits the description of
long-lived traffic. The rationality of this description is that if
a flow exceeds the buffer capacity of the switch, even if its
absolute duration is relatively short, from the perspective of
the switch, this flow is sufficient to be considered long-lived.

When a port is transmitting long-lived over-line-speed traf-
fic, its serving rate cannot match the arriving rate, causing
rapid growth in port queue length. Once the queue length
matches the port threshold, it will remain stable until trans-
mission of the whole flow has completed in which case
consecutive packet drop will occur due to threshold limitation.
However, as discussed in §II-B, buffer occupation in this
scenario does not benefit port throughput but significantly
reduces the amount of buffer that can be used by other ports
and extends the overall queuing delay. Therefore, if a port is
transmitting long-lived over-line-speed traffic, its port queue
should be proactively evacuated, for the purpose of avoiding
meaningless buffer occupation.

Proactive evacuation can be achieved with a simple mech-
anism. When a switch port determines that the traffic it
is transmitting is long-lived, it proactively lowers its port
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Fig. 4. Port control state transition diagram of TDT.

threshold in order to reduce its queue length. It is worth noting
that queue length reduction in this circumstance does not
affect port throughput. When the transmission is over, buffer
management policy should quickly restore its threshold to the
normal threshold for fairness consideration.

Proactive evacuation only applies to “overwhelmed” ports.
For the reason that additional buffer to “overwhelmed” ports
does not bring extra throughput, whereas long-term buffer
occupied by these ports potentially impedes other ports
from leveraging the same buffer space to absorb bursts, and
increases the delay caused by queuing. Proactive evacuation
should never be activated unless there is high confidence that
a port will remain in the “overwhelmed” state for a relatively
long time thus port throughput is not affected by the reduction
of queue length. Once a port is no longer in the “overwhelmed”
state, proactive evacuation should be terminated accordingly
to avoid throughput loss.

V. TRAFFIC-AWARE DYNAMIC THRESHOLD

In this section, we present a possible design of traffic-aware
buffer management policies, Traffic-aware Dynamic Thresh-
old (TDT). On the basis of the classic dynamic threshold [7],
TDT controls port thresholds by assigning a traffic state
indicator to each port and detecting traffic changes in a time-
independent way. Our design controls the thresholds on the
port level, without maintaining flow-level information [14],
which gives our design natural scalability. Moreover, we show
that parameter tuning of TDT is convenient, because it only
considers the parameters of the switch itself, and avoids the
use of network state-related parameters (e.g., burst duration as
in EDT [8]). At the end of this section, a simple but typical
example is given to show how TDT works.

A. Port-Wise Control State

In TDT, each switch port has three possible control states.
When the traffic is relatively mild, the port is in “normal”
state and controls its queue length by the shared dynamic
threshold as in equation (1). When a port is transmitting
burst traffic, the port state transits to “absorption”, temporarily
raising the threshold to absorb burst traffic as much as possible.
On the other hand, when a port is transmitting long-lived over-
line-speed traffic, the port turns to the “evacuation” state that
proactively evacuates the queue by lowering the port threshold.
State transition diagram is shown in Figure 4.

“Absorption” State: In the “absorption” state, the port
threshold is the total amount of buffer divided by the total

number of ports in “absorption” state. The “absorption” state
is triggered by port becoming “overloaded”, which indicates
that the port is transmitting burst traffic. Therefore, the trigger
condition for the “absorption” control state is the same as
the judgment condition of port “overload”, that is: port queue
length increases while no packets are dropped.

For fairness consideration, a port should quickly lower the
threshold and return to the “normal” state when additional
buffer is no longer needed. Under two circumstances additional
buffer is no longer beneficial: first, the port has finished
transmitting burst traffic and second, the size of traffic exceeds
buffer capacity. In other words, the switch should cease extra
buffer allocation when a port has transited from “overloaded”
state to either of the other two states.

For the former condition, two possible scenarios exist: a)
After the burst traffic transmission is completed, no traffic
continues to be transmitted on this port, or the rate of traffic
that continues to be transmitted is low, which is manifested
as consecutive packets dequeue from the port queue (packets
dequeued between two enqueued packets); b) After the burst
traffic transmission is completed, there is still traffic of a
certain rate (within the line speed of the port) being transmitted
in the port. In that case, queue length will decrease slowly,
resulting in the port occupying excessive buffer for a long time
after the completion of the burst traffic. Cumulative packets
dequeue from the port queue (packet dequeued regardless of
packet enqueued) should be restricted to ensure a timely return
to the “normal” state.

For the latter condition, even the entire buffer is not enough
to avoid packet drop, which means that this “burst” traffic
is actually long-lived, at least from the perspective of switch
buffer, and the port is actually in the “overwhelmed” state.
In that circumstance, buffer overflow event will occur, indicat-
ing a state transition back to the “normal” state.

“Evacuation” State: In the “evacuation” state, port thresh-
old is the total amount of buffer divided by the total number
of ports (both active and inactive), which means that the
evacuation threshold is equal to the “evenly split” share of the
total buffer. The “evacuation” state is triggered by cumulative
drop events, which indicates the port is transmitting traffic that
cannot be absorbed by the buffer, i.e., long-lived over-line-
speed traffic. A port should return from the “evacuation” state
to the “normal” state once the long-term traffic has finished
transmitting and port traffic state becomes “underloaded”.
Consecutive packets dequeue from the port queue can indicate
the port being “underloaded” for most cases. We use a lower
bound on queue length as “safety reassurance” in case over-
line-speed traffic is followed by traffic transmitting at slightly
below port line rate so that there might not be consecutive
packets dequeue.

B. Time-Independent State Decision
To be directly deployed on high-speed switches, buffer

management policies should be able to directly interact with
port signals. This means circuit level design is needed for a
practical buffer management policy. TDT uses a state decision
module in each output port to detect traffic state and decide
port control state. State decision module leverages signals of
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Fig. 5. Circuit logic of state decision module.

packets enqueue, dequeue and drop in the port, as well as state
information such as queue length and buffer overflow signal.
Two-bit output is generated by the state decision module
whenever any of the above signals trigger a state decision.
Next state of the port is determined by the two-bit output
and the following mapping rules: (0, 0) → “normal” state;
(1, 0) → “absorption” state; (0, 1) → “evacuation” state.
The state decision module consists of three parts: absorption
decision, evacuation decision and restoration decision. The
circuit logic design of the port state decision module is shown
in Figure 5. The port state decision module is composed of
several counters, triggers and comparators. Notice that timers
are not part of the state decision module. This is an important
design choice in TDT that we will explain later.

Absorption Decision: The core part of the absorption deci-
sion is the Net Enqueue Counter (NEC) that keeps tracking
the amount of net enqueue packets. When NEC reaches its
threshold, it will trigger the first trigger (Tr1) to inform a state
transition from “normal” to “absorption”. The function of NEC
is to detect rapid queue length increasing in the condition that
no packets are dropped, which means there should be several
reset conditions for NEC if the above requirements are not met.
First, if a packet drop event occurs, the remaining buffer is not
sufficient to absorb burst traffic, thus NEC should be reset for
future burst detection. Second, if the first output counter (OC1)
reaches its threshold, indicating at least a certain amount of
time has passed before NEC reaches its threshold, it can be
assumed that the arriving rate of traffic does not meet the
speed requirement of burst traffic, thus NEC should also be
reset. Notice that OC1 serves a similar role of determining a
“time out” event, but we use an output counter instead of a
timer.

Evacuation Decision: The Drop Counter (DC) is the core
of the evacuation decisions. The value of DC keeps adding
with packet drop events in each port. When the value of DC
reaches its threshold, a signal will be sent to trigger the second
trigger (Tr2) to transit port control state to “evacuation”.
“Evacuation” state should only be triggered by consecutive
packet drop events instead of long-term accumulation of
packet dropping. Therefore, when Dequeue Counter (DEC)
detects consecutive packet dequeue events, it will send a signal
to reset DC to restart the counting.

Restoration Decision: When a port is in the “absorption”
state or “evacuation” state, it is important to restore its
state to “normal” when traffic changes. When a port is in

the “absorption” state, there are three possible conditions
indicating state restoration: 1) DEC reaches its threshold,
indicating burst traffic has finished transmitting; 2) the second
output counter (OC2) reaches its threshold, indicating the port
has already transmitted burst traffic of the maximum possible
size allowed by the switch; 3) buffer overflow, which is the
sign that the buffer is unable to fully absorb the burst traffic.

On the other hand, if a port is in the “evacuation” state, there
are two conditions for state restoration: 1) DEC reaches its
threshold, indicating that the port is no longer “overwhelmed”;
2) queue length is less than a lower bound. The latter condition
serves the role of a “safety reassurance” if the over-line-speed
traffic is followed by traffic transmitting at a rate slightly lower
than the line speed. In that case, DEC might not reach its
threshold but evacuation should be terminated.

Time-Independent Design: As mentioned above, unlike
existing methods [8], TDT avoids the use of timers in the
design of the state decision module. Instead, TDT uses two
output counters to indicate “time out” events. Two major
reasons are behind this design choice. First, output counters
can adjust the trigger interval according to the change of
port traffic. More specifically, if a port is overloaded, the
port queue cannot remain empty, in this case, the output port
transmits at maximum speed, i.e., port line speed. Output
counter is equivalent to a timer in that case. Second, the timer
timeout setting usually needs to consider the changes of the
network environment which means parameters of the timer
often need retuning when network condition changes. On the
contrary, the parameter of output counters is directly related
to switch buffer settings, which means using output counters
can help achieve designs independent of the often inaccurate
assumptions on specific network environments.

C. Convenient Parameter Setting
In TDT, several parameters need tuning before deployment.

As discussed above, TDT avoids the use of time-related
parameters. Only thresholds of several counters and one input
of comparator require setting. We assume that the line rate of
all output ports is equal in the same switch for simplicity. The
switch has a buffer size of B and n ports.

NEC and OC1 together make absorption decisions thus their
thresholds should be set together. NEC should detect rapid
queue length growth, thus a smaller NEC threshold is more
sensitive to small bursts and a larger NEC threshold would
mean otherwise. In practice, the evenly split threshold B/n
is good enough for most cases. OC1 limit the rate of burst
traffic. Burst traffic with rate less than a certain value cannot
trigger NEC because OC1 will reset NEC in advance. If we
set that the rate of burst traffic should be at least k-times the
line speed of the port, then the threshold of OC1 should be
set to 1

k−1 of the NEC threshold. In practice, if we believe
that burst rates from incast scenarios should be at a minimum
twice the port line-speed, we can set OC1 threshold to B/n.

Evacuation decision relies on DC. DC is used to detect
cumulative packet drop events. Cumulative packet drops can
be a result of long-live over-line-speed traffic or temporal traf-
fic changes. Therefore, the threshold should be large enough
to avoid frequent triggers. Evacuation should not be triggered
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Fig. 6. An example of queue length and threshold evolution of TDT.

by periodical queue length variation caused by TCP behavior.
More specifically, packet drops during congestion control
response time should not be enough to trigger evacuation.
When α of DT is set to 1, at most half of the total buffer
is reserved when a port reaches its threshold [7]. The number
of cumulative packet drops exceeds half of the total buffer
indicates the traffic cannot be absorbed even with the whole
buffer and for the switch, this traffic is enough to be considered
as long-lived. Base on that we conservatively set the threshold
of DC to B/2.

Restoration decision is based on DEC, OC2, and the input
of the comparator. DEC detects consecutive packet dequeue
events, which is a characteristic behavior rather than quanti-
tative behavior. Therefore, DEC can be set to a small number
such as 3 or 5. OC2 limits the maximum size of bursts. For
burst traffic of twice the port line rate, the whole buffer can
absorb burst with size up to twice the buffer space. The number
of packets in a burst that the buffer can absorb decreases as
the traffic rate increases. For most scenarios, we can set the
threshold of OC2 to 2B. Finally, the lower bound of queue
length is a “safety reassurance” for state restoration, which
should not be too sensitive considering in most cases the end
of long-lived traffic should be signaled by DEC instead of the
comparator. Setting it to half the evacuation threshold, i.e.,
1/2 × B/n = B/2n is sufficient for most situations.

D. Putting It All Together

In this part, we will use a simple but typical example to
show how TDT works. First, a burst starts at time t = 0 and
finishes at t = 5ms, then a long-lived slightly over-line-
speed traffic starts at t = 10ms and continues over-line-speed
transmission until t = 30ms. Figure 6 shows the evolution of
queue length and corresponding threshold.

Port starts at the “normal” control state, threshold decreases
as queue length increases. When the state decision module
detects burst traffic by rapid queue length growth, it instructs
the port to change its state to “absorption” to raise its threshold
to the total amount of buffer, ensuring the absorption of
traffic burst. After the burst transmission has finished, the
state decision module makes a restoration decision and puts
the port control back to “normal”. When the second flow
arrives at t = 10ms, it does not trigger the “absorption” state
because its arriving rate does not meet the rate requirement
of a burst. Then this queue length of this flow is controlled

by the dynamic threshold as in “normal” state. When queue
length converges with the threshold, it stops increasing and
packet drop occurs. When cumulative packet drop has reached
a certain amount, state decision module decides that this port
is in “overwhelm” traffic state, thus control state should transit
to “evacuation” and threshold undergo a cliff-like drop while
queue length decreases gradually due to the restriction of port
transmission speed. After the long-lived over-line-speed traffic
has finished transmitting, the state decision module quickly
lets the “normal” state retake control and raises the threshold
for future traffic.

VI. EVALUATION

In this section, we compare the performance of TDT and
existing buffer management policies with large-scale simula-
tion based on the ns-3 network simulator2 [27] and deep dive
into the reasons behind performance gain of TDT. We use
DT [7] and EDT [8] as comparison schemes of TDT. Evenly
Split (ES) and Complete Sharing (CS) are also used as auxil-
iary baselines. Stability and convergence of congestion control
behavior with TDT enabled in the switch is tested. We also
implement TDT and its comparison dynamic threshold policies
in a real DPDK testbed and compare their performance of flow
completion times.

A. Micro-Benchmarks
In this section, we consider a 16-port shared memory switch

with 1MB buffer and 1Gbps port line speed [8], [28]. Packet
size is set to 1500 bytes which makes the total buffer size
667 packets. We use 1 as the control factor α of DT, EDT and
the “normal” state of TDT as suggested in [7]. Parameters of
EDT are set according to [8] as C1 = 3, C2 = 8, TM1 =
2.1ms, TM2 = 10ms. As for TDT, threshold of NEC, DEC,
DC, OC1 and OC2 are set to 42, 3, 333, 42 and 1344,
respectively, according to the suggested parameter setting in
§V-C. Note that this section only serves as a demonstration of
potential, ideal performance gain of TDT, thus all experiments
are carefully designed for simplicity and better understanding.
Results in this section are not representative of overall perfor-
mance of TDT, which will be shown in §VI-B and §VI-C.

Burst Absorption: First, we use a simple scenario with
long-lived traffic and burst traffic to demonstrate how TDT
improves the absorption capacity of burst traffic by proactive
evacuation. Queue length evolution of TDT and its comparison
policies are shown in Figure 7. The first two ports transmit
2Gbps traffic throughout the entire 0.2s experiment. The third
port starts transmitting 8Gbps burst traffic at t = 0.15s
and finishes 1ms later. As shown in Figure 7(a), due to
strict queue length fairness restriction of DT, packet drop of
burst occurs early. It should be pointed out that packets start
dropping even before queue lengths converge, the same as
the case in Figure 3(b) EDT improves its burst absorption
capacity by relaxing threshold restriction for port 3, as shown

2Vanilla ns-3 simulator does not support shared memory switch architecture
and threshold control. We implement total buffer control and port queue
threshold control by adding static functions and buffer-related variables to
ns-3 source code using C++ programming.
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Fig. 7. Queue length evolution of two ports transmitting long-lived over-line-speed traffic and burst traffic arrives at the third port at 0.15s.

in Figure 7(b). Unfortunately, burst absorption of EDT stops
just after a while when buffer overflow occurs, as a conse-
quence of buffer occupation of port 1 and port 2. As for TDT
in Figure 7(c), early proactive evacuation of queues of port 1
and port 2 pays off when burst traffic arrives at port 3. TDT
allows ports that transmit bursty traffic to use up to the entire
buffer without being limited by the evacuation rate of ports
occupying the buffer.

It may come as a surprise that proactive evacuation makes
TDT a “fairer” policy, in terms of throughput of different ports.
As shown in Figure 7(d), TDT achieves nearly the optimal
throughput in all three ports whereas its comparison policies
fail to bring similar additional throughput for port 3 compared
with the first two ports. By getting rid of meaningless queue
length restrictions, TDT can fairly provide as much additional
throughput as possible for different kind of ports.

Results above can be mathematically interpreted using the
analytical results from §III. We can substitute R = 8Gbps,
N = 2, M = 1, B = 1MB, α = 1 into (8) and (13).
Theoretically, the max burst duration for complete absorption
are 222us and 533us for DT and EDT respectively. This
means that DT/EDT first drop a packet from the burst flow
when its queue length is 0.19MB/0.47MB. As for TDT, the
max burst duration is still B

M(R−C) = 1.14ms which means a
packet can only be dropped when the burst fully occupied the
buffer. The theoretical results matches the experimental results
of Figure 7 perfectly.

Delay Reduction: We use a different micro-benchmark to
demonstrate TDT’s improvements on delay-sensitive traffic
and the reasons behind. Figure 8 shows the delay results of
single active port transmitting 2Gbps traffic from t = 0 to
t = 0.2s and a delay-sensitive flow starts right after t = 0.2s,
with 0.8Gbps arriving rate and lasts for 10ms. We focus on the
delay of the second flow. As shown in Figure 8(a), TDT has an
identical delay performance as ES, which outperforms DT and
EDT by a large margin. CS is considered as the upper bound
for delay. The reason behind a lower delay of TDT is straight-
forward, reduction of average queue length. Queuing delay is
determined by the total amount of packets in queue when a
packet arrives at a port. As shown in Figure 8(b), by proactive
evacuation of meaningless buffer occupation, TDT can reduce
queue length in ports transmitting long-term traffic without
affecting their throughput.

B. TDT With Homogeneous Traffic
We test TDT and its comparison policies in large-scale sto-

chastic scenarios. In the context of this section, homogeneous

Fig. 8. TDT reduce delay by keeping a relatively short queue length. A&B
indicates that scheme A and B have identical delay performance in this
scenario.

traffic means that except for the background traffic, each
switch port can transmit either short burst traffic or long-
lived traffic. In this part, we consider unresponsive UDP traffic
and leave response TCP traffic evaluations in the following
parts. Switch and parameter settings are identical to §VI-A.
Guided by the experiment settings in [7] and [8], we consider
the following scenario: Among 16 1Gbps output ports, 8 of
them are transmitting traffic composed of poisson background
traffic with 20% average load and burst traffic with 8Gbps
arriving rate, 250us average “on” time and 19.75ms average
“off” time. The total average traffic load is 30%. We test
performance of TDT and its comparison policies in terms of
the absorption capability of loss-sensitive burst, the throughput
of long-lived traffic, and the delay of light load short traffic
with 0,1 or 2 additional port(s) transmitting long-lived over-
line-speed traffic.

Loss-Sensitive: We count the lossless ratio of burst traffic
within different duration intervals and show the results in
Figure 9(a)-9(c). When no port is transmitting long-lived over-
line-speed traffic (Figure 9(a)), TDT can achieve a similar
lossless ratio as EDT given hardly any port needs evacuation.
DT achieves poor absorption performance due to the strict
threshold restriction. However, as shown in Figure 9(b) and
Figure 9(c), when overwhelmed ports exist, the performance
of EDT drops dramatically while the performance of TDT
remains basically unchanged. Especially, in the case of two
overwhelmed ports, almost all burst traffic longer than 0.5ms
cannot be absorbed using DT or EDT, whereas TDT achieves
an over 80% lossless ratio when bursts are no longer than
0.75ms and an over 50% lossless ratio otherwise. In general,
the overall lossless ratios of Figure 9(c) are 5.5%, 57.8%,
92.7%, respectively, which means TDT has a ∼60% perfor-
mance gain than the best performing existing policies when it
comes to absorption of loss-sensitive burst traffic.
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Fig. 9. Performance of TDT and its comparison policies with homogeneous traffic.

Delay-Sensitive: Figure 9(d) focuses on the delay distrib-
ution of background traffic. Notice that in Figure 9(d) only
delay of background traffic in overwhelmed ports is presented,
since delay in ports absorbing burst traffic cannot be optimized
simultaneously as burst absorption capability on the port level.
For DT and EDT, most of the time queue length is equal to the
port dynamic threshold, i.e., half the total buffer space when
only one port is overwhelmed and α is 1, causing a half-
buffering-time queuing delay for packets. CS always allows
a single port to occupy as much as the entire buffer. For
an overwhelmed port, this means queue length is as long as
possible within the total buffer limit, causing a queuing delay
close to buffering time. With proactive evacuation, TDT can
keep the average queue length similar to ES, resulting in less
than 2ms queuing delay for more than 90% packets.

Throughput-Sensitive: As discussed in §IV-B, proactive
evacuation of TDT should not affect the throughput of long-
lived over-line-speed traffic. Figure 9(e) shows the throughput
of the overwhelmed port. All three dynamic threshold policies
have similar throughput results. EDT achieves a slightly lower
throughput than DT and TDT due to its time-dependent
design which potentially leads to relatively long-term buffer
occupation of ports transmitting burst traffic that further causes
throughput degradation of overwhelmed ports.

Fairness: TDT is fair among different ports in the long run
because when multiple ports are active, it ensures each port has
a similar chance to obtain additional throughput. We use the
throughput fairness combined with Jain’s Fairness Index [29]
to measure fairness numerically. The Jain’s Fairness Index is
defined as (15).

Fairness Index =
(
∑

xi)2

n
∑

xi
2

(15)

where xi is the ratio of real throughput to ideal throughput (the
maximum throughput that can be achieved when a port can
monopolize the buffer space) of port i and n is the number of

total ports. This notion of throughput fairness is much more
reasonable compared with queue length fairness as it takes port
demand information into consideration. Specifically, not giving
buffer to a port that does not need buffer is not considered
unfair anymore.

Figure 9(f) shows the overall fairness index of different
ports. All policies have similar fairness indexes except CS
that has no queue length restriction and is considered the most
“unfair” policy. Let us zoom in on the fairness attenuation3 of
three dynamic threshold policies. TDT is “fairer” than DT and
EDT because it can achieve closer to the ideal throughput on
ports with burst traffic while achieving nearly ideal throughput
on ports transmitting long-lived traffic.

C. TDT With Mixed Traffic

In this part, we consider a more general scenario in which
each port in the switch transmits mixed traffic composed of
background traffic, short burst traffic and long-lived traffic.
To demonstrate that TDT performs well with different line
rates, we consider a 16 port shared memory switch with a
10Gbps line rate and 3MB shared buffer. Among the 16 ports,
8 are active and transmit traffic with a 40% average load.
Specifically, traffic arriving at each port consists of background
traffic with a 20% average load, burst traffic with an 80Gbps
rate and 200us average “on” time and long-lived traffic with a
15Gbps rate and 100ms average “on” time. The ratio between
burst traffic and long-lived traffic is 9:1.

The experimental results are shown in Figure 10. In this sce-
nario, TDT still evidently outperforms other dynamic threshold
policies in terms of burst absorption. Overall, TDT can absorb
over 140% additional burst traffic compared to DT and 22%
compared to EDT. TDT achieves slightly (less than 1% in
average) less throughput of long-lived traffic compared with

3This metric is proposed in [30] based on the concept of measuring relative
performance degradation.
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Fig. 10. Performance of TDT and its comparison policies with mixed traffic.

Fig. 11. Parameter sensitivity of TDT.

DT and EDT. This makes sense because the throughput differ-
ence derives from the buffer that DT and EDT allow long-lived
traffic clinging onto, which TDT proactively evacuates in order
to absorb more bursts. When the duration of long-lived traffic
is sufficiently long, this difference is negligible.

D. Parameter Sensitivity of TDT

We test the sensitivity of TDT to model parameters. We con-
sider one essential parameter of TDT, i.e., the threshold of
the Drop Counter (DC) that determines whether and when
to conduct proactive evacuation. Intuitively, if the threshold of
DC is set too small, frequently triggered evacuations can cause
throughput degradation. Conversely, a too large DC threshold
may hinder necessary evacuation, resulting in less burst traffic
being absorbed. The experimental setup is identical to §VI-C
except the average duration of long-lived traffic is set to 10ms
to make it even harder for the Drop Counter to detect whether
a port is transmitting long-lived traffic.

We report the lossless ratio of burst traffic and throughput of
long-lived traffic given different DC thresholds in Figure 11.
Normalized throughputs are shown in box plots and lossless
burst ratios are in a line plot. Generally, smaller DC thresholds
lead to premature evacuations and better absorption capability
whereas larger DC thresholds yield delayed evacuations and
better throughput of long-lived traffic. It is worth noting
that the performance variation in terms of average lossless
ratio and throughput is less than 2%, indicating that TDT
can perform consistently well under a wide range of DC
thresholds. In practice, our suggested DC threshold B/2 will
work just fine.

E. Stability and Convergence

The advantages of TDT derive from its traffic-aware fea-
tures. Therefore, directly discussing the stability of a buffer

Fig. 12. Convergence of TCP CUBIC under different buffer management
policies.

management policy itself may not be a good way to evaluate a
highly dynamic, time-varying scheme. Nonetheless, we believe
the influence of different buffer management policies on the
stability of congestion control behavior should be taken into
consideration. We consider two widely deployed TCP conges-
tion control schemes, CUBIC [25], a typical loss-based con-
gestion control scheme in wide area networks, and DCTCP [5],
one of the most commonly used congestion control scheme in
data center networks. We configure the switch with DT or TDT
to observe the convergence properties of end host congestion
control. Specifically, we use the convergence of throughput to
indicate the stability of congestion control under the influence
of buffer management policies.

TCP CUBIC: is a loss-based congestion control scheme that
makes decisions according to whether and when a packet is
dropped. However, TDT changes that by proactively raising
or lowering port thresholds. Potentially, TDT can affect the
stability of TCP CUBIC. To get an accurate grasp of this
influence, we construct a simple scenario to test the throughput
convergence of TCP CUBIC under the effect of DT and TDT.
We have 4 hosts connected to a shared-memory switch through
a 100Mbps link, 3 of which act as senders and 1 as a receiver.
Three senders start data transmission 5 seconds apart. The
shared buffer size is 2MB, base α of DT and TDT is 1 and
other TDT parameters are set based on the guide from §V-C.

Results from Figure 12 show that with both DT and
TDT, 3 flows can converge to their fair share of through-
put (33Mbps). Indeed, TDT converges slower, we find that
reasonable given the fact on a single port DT is actually
equivalent to a static threshold and TDT dynamically adjusts
the threshold. That being said, the results demonstrate that
compared with DT, TDT does not make TCP CUBIC unstable
as it can still converge.

DCTCP: leverages switch ECN to avoid long-standing
queues. Buffer management policies often work at the begin-
ning of many-to-one incast scenarios. We consider a 10-to-1
incast where 10 DCTCP flows from different senders to
one receiver start simultaneously and report their individ-
ual throughput and overall fairness. To construct a high-
bandwidth, shallow-buffered data center scenario, we set link
bandwidth to 10Gbps, the shared buffer size of the switch to
1MB and the ECN threshold to 0.72 times the bandwidth-delay
product (BDP) following [31].

In Figure 13 we plot the throughput of 10 flows as well
as the jain’s fairness index within the first 2 seconds. It can
be observed that due to threshold variation at the beginning,
TDT encounters larger fluctuation than DT, resulting in a
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Fig. 13. Convergence of DCTCP under different buffer management policies.

0.98 fairness index at around 0.5s. But TDT does not affect
the overall stability of DCTCP. Both DT and TDT can achieve
an average fairness index above 0.99.

F. TDT in a DPDK-Based Switch

We implement TDT and its comparison buffer management
policies on a DPDK [32] testbed with 4 host servers con-
necting to an emulating switch with four ports. The server
emulating the switch has a 28-core Intel Xeon E5-2660
2.00GHz CPU, along with 32GB of memory, a hard disk
with 2TB storage, and four Intel 82599ES 10-Gigabit Ethernet
NICs. We use Ubuntu 16.04 LTS GNU/Linux kernel 4.15.0 as
the operating system. The other four servers have a 4-core
Intel i3-3220 3.30GHz CPU and an Intel 82599ES 10-Gigabit
Ethernet NIC. The buffer size of the switch server is set
to 256KB and we use a rate limiter to limit the sending
rate of each port to 1Gbps. TCP CUBIC [25] is used as
the congestion control algorithm [33]. We use an empirical
traffic generator [34] to generate traffic of simple client/server
application. In our experiment, we use the WebSearch flow
size distribution given in [5]. Two active ports are set to
have different offered loads. A port has a 40% average load
while the other is overwhelmed over a 100% average load.
We focus on the flow completion time (FCT) [35] of the
first port under the influence of the overwhelmed port. Using
different random seeds, we repeat the experiment 50 times and
report the average FCT. We have generated over 20,000 flows
in total.

The parameters of EDT and TDT are adjusted according
to the port number and buffer size. The threshold of dequeue
counter (C1 in EDT, DEC in TDT) is set a little larger because
TCP data flow has relatively larger fluctuations. Mean FCT
results of TDT and its comparison policies are shown in
Figure 14(a). On average, TDT reduces the flow completion
time by 12% compared to DT, and 8% compared to EDT.
As shown in Figure 14(b), more than 80% of the time,
TDT performs better than DT, and the maximum gain can
reach up to 50%. EDT also outperforms DT, but not as
much as TDT. The reason for TDT’s better performance is
its time-independent feature and proactive evacuation design.
TDT reserves more buffer for burst absorption by accurately
determining port traffic type in a timely manner. On the
contrary, the time-dependent design makes it difficult for EDT
to accurately determine the arrival and departure of burst
traffic, and the buffer occupied by the overwhelmed port limits
the other port’s ability to absorb burst traffic.

Fig. 14. TDT reduces FCT on DPDK testbed.

VII. DISCUSSION

Scalability: TDT only leverages port-level traffic informa-
tion of aggregated flows. As a result, the complexity of TDT
only depends on the number of ports, not the number of
concurrent flows. TDT scales easily when the number of ports
or the line rate of ports increases. For example, when the
number of switch ports increases from 16 to 96 or 128, TDT
only needs to add the corresponding number of state decision
modules, and each module only takes information from its
own port, along with little global information such as total
buffer usage and statistical information of global port control
states. TDT is naturally scalable to port line rate because its
design is irrelevant to the absolute value of port line rate. Not
only can TDT scale to scenarios with larger port numbers and
line rates, we believe that the performance gain of TDT can
even be amplified in such scenarios. The logic behind is that
as the number of ports and port line rate increases, typically
the degree of sharing increases as well, implying that the
average buffer for each port shrinks. Buffer occupation in such
cases incurs even greater performance degradation, calling for
“dynamic” use of buffer in a more extreme manner, which
is what TDT provides with “absorption” and “evacuation”
designs. Finally, when there exists more than one type of
port (e.g. mix of 1Gbps and 10Gbps ports), simple readjust-
ment of parameters is enough while the core design remains
unchanged.

Necessity of an Intermediate “Normal” State: In the design
of TDT, we use an intermediate “normal” state to control
buffer usage of newly arrived traffic according to the original
dynamic threshold. One might wonder if a “normal” is neces-
sary as two states seem enough to achieve absorption and evac-
uation. In fact, we contend that a “normal” state is an important
design choice and an essential part of TDT. The core of TDT
is its traffic-aware feature so that it only allows short and fast
burst traffic to have access to additional buffer. As port-level
control cannot predict the duration of traffic, an intermediate
can assure that TDT neither too aggressive nor conservative.
Specifically, by imposing a dynamic threshold on ports whose
traffic state is unclear, TDT can keep potential long-term traffic
at bay while preventing unnecessary evacuation.

Trade-Offs of TDT: TDT trades off a small part of the
throughput of long-lived traffic for absorption of short burst
traffic. Therefore, TDT performs better in certain scenarios.
It is possible that TDT may not be the best fit for scenarios
where there is little burst traffic. That being said, as previous
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works [18], [36] have demonstrated, bursty traffic is common
in data center networks. Besides, one primary rule in parameter
tuning of TDT (§V-C) is to avoid premature evacuation and
only ports transmitting traffic too long to be called bursts
will be evacuated. To such traffic, additional one-buffer-
size throughput is marginal. In conclusion, TDT does have
trade-offs in its design, but we believe it is a good bargain.

Restrictions of Port-Level Control: Port-level control pro-
vides TDT with excellent scalability but also restrictions.
TDT, as any other buffer management policy based on port
level control, cannot distinguish specific flows with different
types of service in the same port. This mean TDT can only
support different type of service in different ports whereas it
cannot simultaneously optimize for flows that are sensitive to
different metrics within the same port. If the aggregated traffic
to one port actually contains flows with more than one type of
service, differential service using flow-level information and
port priority queues is inevitable. Theoretically, it is possible to
expand the design of TDT to multi-priority scenarios. We leave
it as our future work.

Relationship With Congestion Control: The performance of
buffer management policies depends on the traffic pattern,
therefore the interaction between buffer management and
congestion control needs to be further explored. Current con-
gestion control related researches [5], [16], [23] from the cloud
providers’ perspective, who may not have enough control
over switches, often adopt classic dynamic threshold [7] as a
prerequisite. Buffer management related researches, including
this paper, from the switch vendors’ perspective, due to the
lack of access to the congestion control on end hosts, try
to design more general policies insusceptible to congestion
control. Nevertheless, when designing buffer management
policies, one should take the traffic pattern and dynamic of
congestion control into consideration. For example, previous
work [1] have pointed out that for n flows sharing the same
link, minimum buffer size to achieving full throughput is
BDP/

√
n. In a scenario where n is relatively small, one

should be extra careful when evacuating buffer to avoid
potential throughput degradation.

From another point of view, buffer management policies
like TDT can be surprisingly helpful in maintaining fairness
in scenarios in which end hosts are not under the control of
a control command and can potentially misbehave by using
more aggressive congestion control algorithms. At the end of
the day, we believe the best way is to co-design congestion
control with buffer management. We leave that as our future
work.

VIII. RELATED WORK

Besides EDT [8], there are several other variants of the
classic dynamic threshold policy [7]. The dynamic neural
sharing [9] scheme uses neural networks to allocate buffer
by predicting future traffic patterns based on the self-similar
model. However, the dynamic neural sharing suffers from the
inaccurate assumptions and predictions of traffic. Flow-aware
Buffer Sharing (FAB) [14] leverages flow-level information
to allocate different control parameters to different flows.
By composing different thresholds on flows with different

sizes, FAB can achieve a similar “evacuation” effect as TDT.
The problem with FAB is that in order to enable flow-level
buffer management, the switch inevitably needs to maintain
information of every flow. Even with carefully designed sim-
plification methods, FAB still faces severe scalability issues.
Classic dynamic threshold has also been expanded scenarios
with priority [10] where each port has several priority queues.
Priority queues add complexity, as well as new challenges,
to buffer management. But as discussed in §VII, priority
queues are a possible, perhaps the most straightforward way
for a switch port to support different types of service simul-
taneously, and [10] could be the foundation for designing a
multi-priority version of TDT. Recently, FB (Flexible Buffer
Management) [37] has been proposed to address the minimum
buffer guarantee and burst-tolerance guarantee problems of
shared memory switches, whose main focus is on multi-
priority scenarios.

There has been a recent work that designs buffer-aware
Explicit Congestion Notification (ECN) called BCC [31]. BCC
considers the effect of shared buffer on congestion control
and active queue management (AQM), and uses Dynamic
Threshold [7] as a prerequisite for buffer management when
designing ECN. BCC cannot be directly compared with TDT,
yet we believe co-designing buffer management with conges-
tion control and active queue management is a very promising
research direction.

IX. CONCLUSION

In this paper, we demonstrate that buffer occupation caused
by blind pursuit of buffer utilization and misleading defin-
ition of port fairness does not contribute to throughput but
undermines other metrics. With analytic methods, we fur-
ther show that meaningless buffer occupation undermines the
absorption capability of existing buffer management policies.
To avoid that, we propose the design principles of traffic-aware
buffer management policy, along with a specific policy, TDT,
that simultaneously optimize for loss-sensitive burst traffic,
throughput-sensitive long-lived traffic and delay-sensitive short
traffic. By utilizing the buffer as much as possible to absorb
burst traffic and proactively evacuate meaningless buffer occu-
pation, TDT can fully exploit the benefit of buffer. We test
TDT on the ns-3 simulator and a real DPDK switch prototype.
Experimental results show TDT outperforms existing poli-
cies in terms of several practical metrics, while maintaining
throughput fairness among ports.
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