
Learning Buffer Management Policies for Shared
Memory Switches

Mowei Wang∗, Sijiang Huang∗, Yong Cui∗§, Wendong Wang†, Zhenhua Liu‡
∗Tsinghua University, China

†Beijing University of Posts and Telecommunications, China
‡Huawei Technologies, China

Abstract—Today’s network switches often use on-chip shared
memory to improve buffer efficiency and absorb bursty traffic.
Current buffer management practices usually rely on simple
heuristics and have unrealistic assumptions about the traffic
pattern, since developing a buffer management policy suited
for every scenario is infeasible. We show that modern machine
learning techniques can be of essential help to learn efficient
policies automatically.

In this paper, we propose Neural Dynamic Threshold (NDT)
that uses deep reinforcement learning (RL) to learn buffer
management policies without human instructions except for a
high-level objective. To tackle the high complexity and scale of
the buffer management problem, we develop two domain-specific
techniques upon off-the-shelf deep RL solutions. First, we design
a scalable RL model by leveraging the permutation symmetry of
the switch ports. Second, we use a two-level control mechanism
to achieve efficient training and decision-making. The buffer
allocation is directly controlled by a low-level heuristic during
the decision interval, while the RL agent only decides the high-
level control factor according to the traffic density. Testbed and
simulation experiments demonstrate that NDT generalizes well
and outperforms hand-tuned heuristic policies even on workloads
for which it was not explicitly trained.

I. INTRODUCTION

In the modern Internet, network devices, such as switches
and routers, rely on a packet buffer to absorb burst traffic
and avoid packet loss. Insufficient buffer results in reduced
throughput [1], thereby impairing the network quality of ser-
vice [2]. Most switches today use the on-chip shared buffering
pool to increase the buffer utilization [3]–[5], instead of the
private memory that is exclusive for a single port. The shared
buffer is dynamically allocated to different ports according to
specific buffer management policies [4].

In the last several decades, many buffer management poli-
cies [6]–[15] have been proposed to regulate buffer allocation.
Among them, the Dynamic Threshold (DT) policy [7] is
widely used by manufacturers (e.g., Broadcom [4]), which
restricts the queue length via a dynamic threshold that is
proportional to the current unoccupied buffer space. Several
variants of DT are also designed for priority queues [10], [13],
different traffic patterns [6], [14], [15], and with more decision
information [8]. These policies often aim to maximize link
utilization, minimize packet loss and buffer utilization, while
maintain fairness across different ports.

§Yong Cui (cuiyong@tsinghua.edu.cn) is the corresponding author.

Although these policies have achieved great success, they
often rely on heuristics that prioritize generality and easy im-
plementation over the pursuit of ideal performance on different
traffic workloads. The traffic could arrive at the switch with
time-varying spatial patterns (e.g., combinations of incast with
different degrees). Previous theoretical analysis [9] shows that
the optimal buffer policy depends on the incoming traffic rate
of all ports, and the corresponding buffer allocation for each
port should be different to match its traffic status. However,
designing such a policy to obtain the potential benefit is not
easy. Massive information (e.g., detailed stats of each port)
and control choices (e.g., different buffer allocation schemes
for each port) can increase decision complexity and introduce
various corner cases. Hence, existing policies turn to simple
heuristics, forfeiting the ability to generalize in a wide range
of traffic patterns, even with painfully fine-tuned parameters.

We advocate leveraging modern machine learning tech-
niques to help sidestep this problem. Recently learning-based
schemes have shown great promise in the networking do-
main [16]–[23]. Switch vendors also develop new switches
equipped with AI-chips [24], which makes it possible to
apply neural networks to switch and unleashes the potential
of machine learning to the switch design field.

In this paper, we propose Neural Dynamic Threshold, a
learning-based buffer management solution for shared memory
switches. NDT is built on modern deep reinforcement learn-
ing techniques that can automatically learn highly-efficient
policies from experience given only a high-level objective,
e.g., minimizing average flow completion time (FCT). NDT
expresses its management policy as a deep neural network
(NN) since it can extract features from the high-dimensional
input information without handcrafted engineering. The man-
agement policy is trained by interacting with simulated en-
vironments, where it allocates the buffer, observes the reward
signal, and gradually improves its control policy. However, it is
non-trivial to directly apply off-the-shelf RL algorithms to the
buffer management problem. To make it feasible, we develop a
scalable neural network model, a decision trigger mechanism,
and an action encoding scheme with domain knowledge.

First, compared to traditional RL applications (e.g., video
games [25], [26]), buffer management problem has a larger
problem size in both the state space (i.e., the number of
potential traffic conditions that the buffer management policy

978-1-6654-5822-1/22/$31.00 ©2022 IEEE 730

IE
EE

 IN
FO

C
O

M
 2

02
2

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

8-
1-

66
54

-5
82

2-
1/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
48

88
0.

20
22

.9
79

67
84

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:29:36 UTC from IEEE Xplore. Restrictions apply.

faces) and the action space (i.e., the number of possible choice
combinations). This is because buffer management policy must
scale to tens to hundreds of ports and decide among potentially
thousands of configurations per port (e.g., different sizes of the
allowed buffer occupancy).

To solve this problem, we designed a scalable neural
network architecture that leverages a permutation-equivariant
neural network [27]–[29] to process port state information and
make buffer management decisions. Our neural network reuses
several small building blocks for each port, thus it can scale to
an arbitrary number of ports while maintaining the model size
unchanged. This neural network design substantially reduces
the complexity of the model and the requirement of the
training data, which is the key to efficient learning.

Second, the learned buffer management policy should make
decisions with high efficiency. The conventional decision
trigger mechanism can not directly extend to learning-based
solutions due to hardware constraints. Existing policies usually
work at the packet level, i.e., every time a packet enqueues
or dequeues, which leaves only hundreds of nanoseconds for
decision making. This inference time budget is too tight for
learning-based solutions deployed on the current, even the
most powerful, AI inference chips [30](§IV-B).

To solve this problem, we design a novel trigger mechanism
that invokes decision-making according to the traffic density,
which greatly enlarges the decision interval. However, the
naive action encoding scheme (i.e., directly deciding the
buffer size for each port) is not compatible with this trigger
mechanism since this fixed buffer decision can not handle
the traffic dynamics during the decision interval. To tackle
this problem, we leverage existing domain knowledge and
encode the control factor of existing heuristics as the action.
Specifically, the buffer allocation is directly controlled by the
selected heuristic during the decision interval while NDT only
makes decisions for the control factor when triggered. This
two-level control mechanism not only enlarges the effective
time of the action but also greatly narrows the exploration
space of NDT, enabling fast training since NDT can learn
from a high starting point.

We evaluate NDT in both simulation and a DPDK-based
switch prototype. The simulation results demonstrate that NDT
outperforms all the existing policies under realistic traffic
workloads. Especially, NDT outperforms DT over 90% of the
time and reduces average FCT by up to 28%. Testbed ex-
periments show that NDT trained in a simulated environment
can generalize well to the real-world switch prototype and the
traffic workload unseen during training. In summary, we make
the following key contributions:

• First RL-based buffer management framework for shared
memory switches that can learn directly from the perfor-
mance metrics (§III).

• A scalable neural network architecture that can process
switch features of an arbitrary number of ports, leveraging
the permutation symmetry of the switch ports (§IV-A).

• A set of mechanisms to achieve efficient decision making
including an action encoding scheme with domain knowl-

Shared memory pool

Switching
fabric

Link 1, egress

Link 2, egress

Link 3, egress

Link N, egress

� �
Output queues

Link 1, ingress

Link 2, ingress

Link 3, ingress

Link N, ingress

�

Memory
management

unit

Figure 1. The architecture of the shared memory switch.

Time

Q
ue

ue
le
ng
th

2B

𝑡!

B

2B/3
B/3

0
0 𝑡"

Threshold

Queue length

Figure 2. An example of queue length and buffer threshold evolution under
DT policy.

edge and a novel decision trigger mechanism (§IV-B).
• A prototype implementation and evaluation of NDT in

both simulation and a DPDK-based testbed (§V-§VI).

II. BACKGROUND

Shared memory switch. As shown in Figure 1, the shared
memory switch is often modeled as an output-queued switch
where packets arriving from input ports immediately cross the
switching fabric and enter a queue at the output port. The
queue will gradually build up when multiple packets from
different input ports are destined to the same output port.
Unlike traditional switches using private memory for each port,
the shared memory switch uses the on-chip shared memory,
which could be shared across multiple output queues. The
concrete buffer allocation is controlled by buffer management
policies implemented in the memory management unit.
Buffer management policies. Many buffer management poli-
cies [6]–[15] have been proposed to optimize throughput,
buffer utilization, and fairness. However, it is not easy to
make trade-offs between efficiency and fairness. To achieve
efficiency, the buffer should be used whenever possible to
reduce packet loss. Nevertheless, this may raise the fairness
problem that a small number of ports occupy most of the
shared buffer, leaving other ports starving.

These solutions can be generally divided into two cate-
gories: preemptive policies and non-preemptive policies. For
preemptive policies [9], [12], packets that are already in the
memory can be overwritten by a newly arrived packet if
the buffer is full. The preemptive policies are proved to be
optimal for some scenarios [9], [12] whereas it is difficult
to implement [6], [7]. Thus in the rest of this paper, we
only consider the non-preemptive setting. For non-preemptive
policies [6]–[8], [10], [11], [13], the arrived packet can only
be dropped before entering the queue, which means packets
in memory will never be dropped. Among the non-preemptive
policies, the Dynamic Threshold [7] policy has been widely
used by switch vendors [3], [4].
Dynamic threshold policies. DT is a threshold-based policy,
in which the queue lengths of all ports are constrained by

731
Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:29:36 UTC from IEEE Xplore. Restrictions apply.

Environment
Objective: min. FCTReward

Observations of buffer occupancy and traffic statistics

NDT agent
State

Port state SET

, ,…,
port 1 port 2 port n

NN ! NN "

Reused !

Reused !

Permutation-equivariant neural networks

Reused "

Reused "

… …

Scalable state processing (�4.1)

Efficient decision
making (�4.2)

Threshold
controller

Action:!

Decision
trigger

buffer threshold

Traffic statistics

Figure 3. In NDT’s RL framework, a buffer management agent observes
the port state to decide a buffer allocation action on the switch environment
and receives a reward based on a high-level objective. The agent uses a
permutation-equivariant neural network to extract features from the port state
set and outputs action for each port.

a threshold, which is proportional to the current amount of
unused buffer space. Specifically, let qi(t) be the queue length
(or buffer occupancy) of the port i and B be the total shared
buffer size, then the threshold T (t) is given by:

T (t) = α · (B −
∑
i

qi(t)) (1)

where α is a fixed control factor shared by all ports. A packet
arriving in port i at time t will get dropped if qi(t) > T (t).

To better understand the mechanism of DT, Figure 2 shows
an example time series of queue length and buffer threshold
evolution [6]. Assume that the switch buffer is empty at time
t = 0, then

∑
i qi(t) = qk(t). Here let α = 2, then T (t) =

2 ·(B−qk(t)). At time t = 0, qk(0) = 0 and T (0) = 2B, thus
qk(0) < T (0). Packets are allowed to enter into the buffer,
and qk(t) will increase until qk(t) = T (t) = 2B/3. Once
T = qk, the port is not allowed to occupy additional buffer
and the queue length will not increase any longer. DT trades
off the efficiency for fairness by always reserving a fraction of
buffer to avoid starving newly overloaded ports at the cost of
potential packets dropping from burst traffic even when there
is free buffer space. This policy fits well to the uniform traffic
pattern but can not generalize to skew and bursty traffic.

Based on the classic DT scheme, in recent years, researchers
propose several variants to cope with specific traffic patterns.
Enhanced Dynamic Threshold (EDT) policy [6], as a typical
one, is designed for bursty traffic and allows to temporarily
relax the threshold of the port identified with micro-burst traf-
fic. However, the method to recognize the micro-burst traffic
also relies on heuristic, which has many tunable parameters
requiring expert knowledge and significant effort to devise.
These solutions rely on heuristics that use the fixed control
rule or have explicit assumptions of the traffic load, thus can
not generalize to a broad range of traffic patterns.

III. OVERVIEW

NDT provides a new option for buffer management by using
data-driven techniques and automatically learns traffic-specific
buffer management policies. NDT does not require human
guidance and explicit modeling of system or traffic patterns,
except a high-level objective (e.g., minimizing the average
FCT). Specifically, NDT is built based on deep reinforcement
learning. Figure 3 shows the high-level framework of NDT.

Table I
NOTATIONS USED THROUGHOUT THIS PAPER.

Entity Symbol Entity Symbol
total buffer size B port i

link line-rate C port state vector xi
total number of ports N port embedding ei

port queue length qi device embedding ē
port threshold Ti port summary embedding zi

port control factor αi non-linear functions φ, f , g, w
port packets enqueue vieq port packets dropping vidp
port packets dequeue vidq port packets excess viex

NDT represents its buffer management policy as an agent
that uses a neural network to make decisions. The NDT agent
is trained using RL algorithms by interacting with the offline
(simulated) environment. When step k is triggered at time step
tk, the agent observes the port state information sk, chooses a
buffer allocation action ak. After executing the action, the state
of the environment transitions to sk+1 and the agent receives
the reward rk. The reward is set based on NDT’s high-level
objective and can be used as a signal to improve the policy.
In the following, we will detail our key design ideas. Table I
defines our notations.
State as a set. In NDT, the state s = {x1, ..., xN} is a set,
where each element is a per-port state vector xi of port i and
N is the total port number. Each port state consists of five
attributes: (i) the port buffer occupancy, (ii) bytes of packet
enqueue since last decision, (iii) bytes of packet dropping since
last decision, (iv) the last action, and (v) the time interval since
last decision. We choose these features in an attempt to include
all the information necessary for decision-making from three
perspectives: port buffer status, traffic statistics, and previous
decisions. NDT can easily support additional state information.
Policy as a scalable neural network. To achieve scalability,
NDT leverages the permutation symmetry of the switch ports
underlying the buffer management problem. Vanilla neural
network designs can have a large scale and must be trained
multiple times to learn identical spatial traffic patterns, re-
sulting in a substantial increase in the amount of training
data and training time. NDT uses a permutation-equivariant
neural network [27]–[29] as its policy, and that can scale to
an arbitrary number of ports since it reuses several building
blocks (e.g., small NN) for port state processing and de-
cision making. The permutation-equivariant NN can extract
features in a permutation-invariant way with the help of certain
permutation-invariant operations (e.g., sum or max) while
keeping the order information for the corresponding decision
making. The details will be introduced in §IV-A.
Action with efficient decision making. The design space of
NDT’s action encoding is limited by the capability of the
supporting hardware. To achieve efficient decision making,
NDT encodes its action with domain knowledge, and uses a
novel decision trigger mechanism that can enlarge the deci-
sion interval and reduce the decision frequency. Specifically,
NDT uses a two-level control mechanism, where the agent
only decides the control factor α when triggered while the
actual buffer allocation is directly controlled by the dynamic

732
Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:29:36 UTC from IEEE Xplore. Restrictions apply.

𝜙
𝑥!

𝑥"
Per-port state

vector

𝑒!
𝑒"

𝑒! = 𝜙(𝑥!)

Per-port
embedding

�̅� =
1
𝑁
*𝑒!

𝑦!
𝑦"

Pairwise port
embedding

𝑦! = [𝑒! , �̅�]

𝑓

𝑧!
𝑧#

Per-port summary
embedding

𝑧! = 𝑓(𝑦!)

[1,1]
concat

Figure 4. The architecture of permutation-equivariant neural networks. Each
color corresponds to a port.

threshold policy during the decision interval. The design detail
of NDT’s action encoding scheme will be elaborated in §IV-B.
Reward enabling end-to-end objectives. With the expressive
reward function, NDT natively supports optimizing the end-
to-end performance metric. For example, if the objective
is to minimize the average FCT, NDT sets the reward as
rk = −(tk − tk−1)Fk for the action ak, where Fk is the
number of active flows during the decision interval [tk−1, tk).
The goal of the RL algorithm is to maximize the expected
cumulative reward E[−

∑T
k=1(tk − tk−1)Fk], where T is the

total number of actions in a training episode. However, a flow
could come and leave during a decision interval, whereupon in
practice reward rk is computed by summing the active time of
all active flows during this interval. This objective minimizes
the active number of flows throughout the entire process, and
consequently, it can effectively minimize the average FCT.
Note that the information of flow active time is only needed
during the offline training process. After training, the NDT
agent works alone without the guidance of the reward.

NDT also supports other high-level objectives by changing
the concrete reward function accordingly. For example, if the
objective is to minimize the total packet loss, the reward
function can be expressed as rk = −

∑
i li, where li is the

number of packet loss of port i during the decision interval.
RL algorithm on continuous action space. In NDT, we
model the action in continuous action space and choose Soft
Actor-Critic (SAC) [31], [32] as our learning algorithm. SAC
is a state-of-the-art RL algorithm and has successfully applied
to real-world learning problems (e.g., robot control [32]),
proven to be sample efficient and robust. Please refer to [32]
for the details.

IV. DESIGN

This section describes the design details of NDT, including
the scalable state processing (§IV-A) and the efficient decision
making (§IV-B).

A. Scalable state processing

When invoked, the NDT agent takes state information of
all ports as input and decides buffer allocation among all
ports. To build the agent, a naive solution is to build a large
neural network that takes a flat feature vector containing all
the port state information as input. However, this approach
can not scale to process information of an arbitrary number of
ports since the input size of the neural network is fixed. The
resulted complexity of the neural network will increase with
the number of ports, rendering the NN difficult to train.

NDT tries to solve this problem based on a crucial ob-
servation that the switch ports are permutation symmetric.
Specifically, we find that the control action of each port only
depends on the port state information itself and is not related to
the order of the port. For example, considering a many-to-one
traffic incast scenario, only the degree of the incast matters
while it is inconsequential whether the ”one” port is port i
or port j. Considering this permutation symmetry of switch
ports, all port state information can be treated as a whole as
an unordered set. Then the state space can be dramatically
reduced since different permutations of the same combination
of port traffic status can be treated equivalently.
Invariant model. To leverage this property, one choice is
to adopt the permutation-invariant neural network architecture
(e.g., Deep sets [27], [29]), which is designed for sets. It uses
some operations or functions g that are permutation invariant
to the order of input elements in the set x = {x1, x2, ..., xM},
i.e., for any permutation π :

g({x1, ..., xM}) = g({xπ(1), ..., xπ(M)}) (2)

These operations include “mean”, “max”, “min”, etc. Although
it sounds promising, this approach can not be directly applied
to NDT since the order information has been discarded so
that the output (i.e., the action) can not be mapped to a
corresponding input element (i.e., the port state).
Equivariant model. All things considered, NDT expresses its
policy as permutation-equivariant neural networks [27], [28],
a variant of permutation-invariant neural networks. Its goal
is to learn a function g that permutes the corresponding
outputs when the input elements are permuted, i.e., for
any permutation π :

g([xπ(1), ..., xπ(M)]) = [gπ(1)(x), ..., gπ(M)(x)] (3)

It embeds the port state information in embedding vectors,
keeping the order information, and outputs the actions for each
port. The architecture of our permutation-equivariant neural
network is shown in Figure 4.

The embedding takes the set of the port state as input, and
outputs three types of embeddings step by step: 1) port em-
beddings, which capture information from the heterogeneous
attributes of per-port state vectors; 2) device embeddings,
which capture the information of all ports, i.e., the switch
device; and 3) port summary embeddings, which aggregate
information from the port and device embeddings. Note that
the stored information in these embeddings is automatically
learned from the end-to-end training without manual feature
engineering. NDT’s permutation-equivariant neural network is
scalable because it reuses several building blocks to get the
above embeddings. These building blocks are implemented as
small NNs that operate on low-dimensional inputs.
Port embedding. Given the port state vector xi, NDT first
build a port embedding ei = φ(xi). The result ei is a vector
(e.g., in R16) that captures information from heterogeneous
attributes (see § III) of the port state vector. In addition, the
port state vector can also be time series that carry information
of multiple decision steps. The non-linear function φ(·) could

733
Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:29:36 UTC from IEEE Xplore. Restrictions apply.

time

Q
ue

ue
le
ng
th

Controlfactor!

2"

#!

"
2"/3

"/3

2!

2"

0 #" ##

"/2

← Threshold

← Queue length

← !

Memory management unit

Fast control:
DT

Slow control:
NDT

Figure 5. NDT’s two-level control mechanism: an example. During decision
interval the buffer threshold of each port is directly controlled by the DT
policy with αi at the packet-level, while the control factor αi of each port is
adjusted by the NDT agent when the trigger condition is satisfied.

be implemented as a recurrent neural network (RNN) to
capture the temporal information.
Device and summary embedding. To leverage the permuta-
tion symmetry, we can take a permutation-invariant operation
as the core building block. Based on that, since we need to
make a decision for each port (i.e., the set element) instead of
the whole device (i.e., the set), we need to maintain the order
information throughout the processing procedure.

NDT achieves this with two steps. First, we create device
embedding ē by adopting the permutation-invariant operation
on port embeddings, i.e., ē = 1

N

∑
i ei. Then we compute the

port summary embeddings as:

zi = f([ei, ē]) = f([ei,
1

N

∑
i

ei]) (4)

where ei is the preprocessed port embeddings and f is a non-
linear transformation implemented as a (small) neural network.
In this process, each port embedding ei is marked by device
embeddings ē, which results in a port summary embedding
zi. In other words, each ei customizes the whole set of port
embeddings for itself to keep the order information. In this
way, all zis are permutation equivariant while containing the
information of all ports.

These summary embeddings can be then used to get the
actions. The continuous action ai for each port is often
modeled following a normal distribution N (µi, σi) and the
mean µi and the standard deviation σi is transformed from zi
with the function g and w, i.e., µi = g(zi) and σi = w(zi). To
make sure the whole procedure is end-to-end differentiable,
the continuous action is derived with a reparameterization
trick [32]: ai = µi + ε · σi, where the ε is a noise sampled
from the standard normal distribution. NDT reuses the non-
linear transformations φ, f , g, and w for all ports.

B. Efficient decision making

To enable efficient decision making, two design questions
need to be answered: 1) “what action should be taken?” and
2) “when should the action be taken?”.

A naive strawman solution is to directly decide the allowed
buffer size for each port at packet-level (i.e., every time a
packet enqueues or dequeues, as what the DT policy does).
Although this solution enables full expressiveness of the whole
action space, it puts a high requirement of inference speed on

the agent. For example, it only takes 120ns to dequeue a 1500B
packet under a 100Gbps link. The time budget could be even
tighter if packets arrive concurrently at multiple ports. On the
other hand, even the most powerful AI inference chip can only
take inference every 12us [30]. Even if the learned policy can
be multiple times lighter than the resnet-50 [33] benchmark
used to measure the AI chip, the chip still can not sustain such
an inference speed requirement.

One option is to invoke the agent at a fixed interval longer
than the maximum inference time. However, determining the
time interval poses a new challenge. If the interval is too long,
then when the traffic pattern changes or burst traffic arrives
during the decision interval, the fixed buffer size assigned by
the last decision becomes a lock that may cause severe packet
dropping. If the interval is too small, making decisions in
high frequency places a heavy burden on the training process,
because many decisions are unnecessary and do not contribute
to the overall outcome.

To solve this problem, NDT uses a two-level control mecha-
nism (Figure 5), which consists of an action encoding scheme
with domain knowledge and a novel trigger mechanism that
can enlarge the decision interval. Specifically, NDT only
decides a high-level control factor when the trigger (i.e., the
slow control) activates, whereas the buffer allocation is directly
controlled by a specified heuristic algorithm that acts at the
packet level during the decision period (i.e., the fast control).
Action encoding with domain knowledge. To enlarge the
action effective time, NDT turns to the domain knowledge
and takes the DT policy [7] (§II) as the underlying buffer
management mechanism. We will first recall the vanilla DT
policy and then illustrate how NDT incorporates it.

The vanilla DT policy dynamically adjusts the queue thresh-
old according to Equation 1 with the control factor α that
is shared by all ports. With the queue building up, the
threshold gradually decreases and finally converge, and a
certain proportion of buffer is left unused for the light-load
port whose queue length is below the threshold. When the
queue length qi equals or exceeds the threshold Ti, newly
arrived packets will be dropped.

In NDT, we encode the control factor αi of each port i
as the action. Each port i uses an independent αi and its
queue length is restricted by the threshold Ti computed with
the port αi according to the equation 1. If αi is a power of
2, the threshold computation can be easily implemented with
only a shift register [7]. Thus we only consider the values
of αi in form of 2m in this paper, which leads to a smaller
action space. To get the αi, we quantize the continuous output
of the permutation-equivalent neural network and map it to a
predefined set of αi values (§VI).

In summary, the buffer is directly managed by the DT
policy at the packet level while the control factor αi for each
port is adaptively controlled by the NDT agent. In this way,
during the decision interval, the adaptation and robustness of
the buffer management are ensured by the property of DT.
Besides, embedding the domain knowledge of DT into NDT
highly narrows the exploration space of NDT enabling fast

734
Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:29:36 UTC from IEEE Xplore. Restrictions apply.

training since NDT learns from a high starting point.
Cumulative-event trigger. To reduce the influence of high
decision frequency, NDT adopts a novel cumulative-event
trigger mechanism that invokes the agent every several packet
events. Here, the packet event includes packet enqueue, packet
dequeue, and packet dropping. The key idea is to trigger the
agent only when necessary so the reduction on the decision
number will not cause much performance degradation.

Specifically, the decision making is aligned to the traffic
density and the NDT agent is dynamically triggered when the
following condition is satisfied:

viex = vieq + vidp − vidq ≥ β (5)

where vieq , v
i
dp, and vidq are the volume of packets enqueued,

dropped and dequeued of port i since the last decision,
respectively. β is a sensitivity hyperparameter. Zooming in
on this mechanism, each packet arrival can only make a
contribution to either vieq when the queue length qi is below
the threshold Ti or vidp when equals or exceeds. Hence, the vieq
and vidp together describe the volume of incoming traffic, and
viex reflects the traffic volume that exceeds the port capacity.

When the incoming rate matches the line rate, NDT does
not need to make decisions (i.e., viex = 0). Note that we
do not allow viex to be negative so that the packet dequeue
vidp counting for the queue draining process will not influence
future traffic, which occurs when packets have been cumulated
in queue during last decision interval. When the volume of
incoming traffic reaches β (i.e., viex ≥ β), either massive
queue building up or severe packet dropping occurs so that
we invoke the agent to adjust the control factor to match the
current traffic status. We set β = B/N as the fair share of the
total buffer size among all ports since this reflects the expected
buffer usage when facing the uniform traffic pattern.

In addition, the agent can also be correctly triggered with
moderate traffic that only slightly exceeds the line rate but
lasts for a while. This is because the left-side items in
equation 5 can cumulate in time while β is a constant so
that normally a small excess of the rate will finally trigger
the agent. However, in practice, we find that the traffic rate
could fluctuate around the line rate and viex always below
β. In this case, the packet dropping could be unbounded,
which could be a loophole for the whole system. To ensure
robustness, we add a “safeguard” [34] to the proposed trigger
mechanism. We force the agent to invoke when the packet
dropping during the decision interval is larger than a “safe
line”, i.e., vidp ≥ γ, where γ is a hyperparameter that controls
the maximum tolerance of the packet loss during a decision
interval. We set γ as the same value as β for simplicity.

In summary, when the rate of incoming traffic of a port
exceeds the line rate to the extend represented by the parameter
β, the agent will adjust the αis for all ports. After the trigger,
these vieq , v

i
dp, and vidq of all ports will reset, which means

the agent will only trigger by the busiest port and will not
be re-triggered too soon by another port. This is reasonable
since the αi of other ports have also been adjusted recently
by the last trigger. We only use the “safeguard” trigger as the

last resort and expect it will never be triggered. To prevent the
frequent “safeguard” trigger, we use a separate counter for it
to measure the packet dropping and only trigger it once until
the normal trigger is invoked.

V. IMPLEMENTATION

We first describe NDT’s training infrastructure. Since exist-
ing commodity switches do not provide the interface to modify
in-built buffer management mechanisms, we implement NDT
on a software switch based on Intel DPDK [35], which follows
the methodology of previous works [6], [36], [37].

A. Training infrastructure

Figure 6 shows the training infrastructure of NDT, which
includes the NDT agent, the packet-level simulated environ-
ment, and the interface between them.
NDT Agent. We build the NDT agent with Python and Tensor-
flow [38]. For each observation, NDT constructs the per-port
state xi as an 8-step time-series of past observations. After
normalization, xi is passed to the permutation-equivariant
neural network. The transformation functions φ consists of two
parts. First, it passes each dimension of xi to a 1D convolution
layer (CNN) with 16 filters, each of size 3 with stride 1.
Then it aggregates the results with fully-connected neural
networks with 64 hidden units. The transformation functions
f is also implemented as a fully connected neural network
with 32 hidden units. The functions g and w are responsible
for output and thus have only 1 output neuron. We apply the
tanh activation function on the final output a to enforce its
range within [−1, 1] and map it to corresponding control factor
α ∈ {2−2, 2−1, ..., 25}. Since these neural networks are reused
for all ports, NDT’s model is lightweight and consists of only
47,650 parameters (˜230KB) in total.

To speed up training, NDT spawns multiple learning agents
in parallel. Each learning worker is configured to experience
an environment with different traffic traces. The workers
continually send their experiences (i.e., {state, action, reward}
tuples) to a central agent, which aggregates them to generate a
single buffer management policy. For each sequence of tuples
that it receives, the central agent uses the SAC algorithm [32]
to compute gradients and perform gradient descent steps. The
central agent then updates the neural network parameters and
pushes out the new model to the worker and the test agent. The
test agent will validate the current model for model selection.
Packet-level simulator. We leverage ns-3 simulator [39] to
build our simulated environment. The flow generator creates
flows according to the input traffic trace that describes the
source port, destination port, start time and flow size of
each flow. By default, ns-3 does not support shared memory
architecture. We implement it by enabling an output queue to
get the queue length in all other ports of the same switch with
a static member of C++ class.
Communication Interface. To enable communications be-
tween the python-based agent and the C++-based ns-3 sim-
ulator, we leverage ns3-gym [40] as the middleware interface.

735
Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:29:36 UTC from IEEE Xplore. Restrictions apply.

ns-3 simulated environment

ns3-gym interface

traffic trace flow generator switch

experience data

neural network parameters

test agentcentral agentworker

Figure 6. The training infrastructure of NDT including the NDT agent, the
ns-3 simulator, and the ns3-gym interface.

Shared	Memory	Pool

L2	Learning
	
&
	

L2	Lookup

.

.

.

.

.

.

.

.

.

.

.

.

Core	1 Core	2 Core	3

.

.

.
Threshold

	
	

Buffer	Management

NDT	Agent	(Core	4) Heuristic	Policy

Rate	Limiter

TX	Ring

Receive	Queue

Output	Queue

Packet Pointer	(to	Packet)

Port	RX

Port	RX

Port	RX

Port	RX

Port	RX

Port	RX

Figure 7. The architecture of DPDK-based switch prototype.

B. Testbed

We build a prototype switch with a server equipped with
multiple NICs and implement NDT on top of it using Intel
DPDK [35] to deliver data directly in user space (Figure 7).
The basic L2 switch references the implementation in [6].
Receive, forward and send. The packet is firstly retrieved
from the receiving port, then forwarded to the output queue,
and finally transferred to the transmit ring (TX ring) buffer.
To ensure the packets will not cumulate in the TX ring, we
add a rate limiter to the output queue implemented as a leaky
bucket so that the buffer occupancy in the output queue can
correctly reflect the real buffer occupancy. To achieve line-rate
sending/receiving, each RX/TX module is implemented on an
individual core. The forwarding module runs on a separate
core, and a hash table in address-port mapping is used to
reduce the lookup delay. Note that the CPU processing rate is
much higher than the line rate, thus most packets will be in
the output queues rather than receive queues.
Shared memory pool. Packet transmission is through pointers
rather than processing real data packets. In particular, after a
packet enters the switch, it is placed in a pre-allocated shared
memory pool, and a pointer to this packet returns. When
sending a data packet, we put the pointer into the TX ring,
and the DPDK driver will take the real data packet from the
shared memory pool according to the pointer before sending
the packet to the network.
Buffer management with NDT. Each output queue has a
threshold. The packets will be discarded if the queue length
exceeds the threshold or the total queue length of all ports
exceeds the entire buffer size. The baseline buffer management
policy is implemented by controlling the threshold of each
port. The NDT model is loaded using Tensorflow’s C library,
and the inference is done using a separate core. First, the core
always monitors the detailed statistics of the output queue to
determine whether the trigger condition is satisfied (§IV-B).
Then a circular queue is used to assemble the time-series state

data. Finally, the state is transferred to the model which is
pre-loaded in the memory, and the model returns the decision.
The switch will use the returned control factor to calculate the
threshold of each port (§IV-B) until the next trigger.

VI. EVALUATION

In this section, we use large-scale simulation and our
DPDK-based testbed to evaluate NDT.

A. Methodology

Training with simulation. We consider a 16-port shared-
memory switch with 1MB buffer and 1Gbps port line
speed [6], [41]. We train the NDT agent with the realistic
heavy-tailed web search workload [5]. The training dataset
consists of more than a hundred traffic traces, where each
includes hundred to thousand of flows. The flows are generated
with exponentially distributed inter-arrival time configured
with the target load 50%. The source and destination of each
flow are arbitrarily chosen with a random in-cast ratio ranging
from 1 to 15. For each traffic trace, we control the number
of active ports and randomly assign the incast degree to them
to increase the representativity of the training dataset. The
objective of the NDT agent is to minimize the average FCT.
In both the simulation and the testbed, we use the same model.
Schemes. We compare NDT with four baseline algorithms: 1)
The Static Threshold (ST) policy, which does not allow buffer
sharing and sets the buffer threshold for each port with the
fair split of the total buffer size, i.e., B/N . This policy is also
referred to as the complete partition policy; 2) The Complete
Sharing (CS) policy, which does not restrict the buffer usage
for any port; 3) The DT [7] policy, which set the shared buffer
threshold for all ports as the α times unoccupied buffer size.
We set α = 1 according to the author’s suggestion [7]; 4)
The Enhanced Dynamic Threshold (EDT) [6] policy, which is
built based on DT and allow the port with micro-burst traffic
temporarily relax the threshold constraint. We set α = 1 and
other parameters according to the suggested parameter settings
in §4.4 of [6].

B. NDT vs. Existing heuristics in simulation

We first compare the performance of NDT with that of
baseline heuristics. The test traffic traces are with the same
generation process as the training dataset but unseen dur-
ing training. We measure the average FCT of each trace
as the performance metric. Figure 8(a) shows a cumulative
distribution of the average FCT over 105 test traffic traces.
First, ST performs worst among all the baseline algorithms.
This is because ST does not share the private port buffer
with other ports, which validates the efficiency of the shared
buffer architecture. NDT outperforms all baseline algorithms.
NDT can achieve this performance gain since it uses a more
expressive policy that allows each port to use different control
factors and learns how to adapt to the traffic pattern in a fine-
grained way. NDT automatically learns this policy through
end-to-end RL learning, while the best-performing baseline
algorithm EDT required careful tuning.

736
Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:29:36 UTC from IEEE Xplore. Restrictions apply.

(a) CDF of average FCT. (b) CDF of FCT gains over DT. (c) CDF of 99 percentile FCT. (d) 96-port environment.
Figure 8. NDT’s learned buffer management policy achieves 8%–43% lower average FCT than baseline algorithms. The learned model efficiently scales to
a larger-scale environment, which shows the scalability of NDT’s permutation-equivariant neural networks.

(a) Web serach workload. (b) Data mining workload.
Figure 9. NDT outperforms DT and EDT in a real DPDK-based switch
prototype and could generalize to different workloads.

Specifically, NDT outperforms DT for more than 90% traces
and achieves up to about 28% improvement (Figure 8(b)).
NDT also outperforms EDT by a large margin. When consider-
ing the tail performance shown in Figure 8(c), NDT improves
the 99 percentile FCT by 18% on average over DT while EDT
only performs comparably with DT.

We also conduct an experiment on a larger-scale switch
environment with the traffic of a 95-to-1 incast competing with
elephant flows in other ports [5], which is not included in the
training set. The switch has 96 ports with 10Gbps line rate and
6MB buffer. Note that the NDT model is not explicitly trained
in this environment. The results shown in figure 8(d) confirm
that NDT can efficiently scale to a large-scale environment.
This is because the permutation-equivariant neural network
reuses the building blocks for an arbitrary number of ports and
captures the critical information among all port state pairs.

C. Generalization in a switch testbed

We built a testbed in which 4 host servers are connected to
an emulating switch with four ports. The server that emulates
the switch equips a 28-core Intel Xeon E5-2660 2.00GHz
CPU, 32GB of memory, a 2TB hard disk, and four Intel
82599ES 10-Gigabit Ethernet NICs. The operating system is
Ubuntu 16.04 LTS GNU/Linux kernel 4.15.0. The emulating
switch has a 256KB shared buffer and uses a rate limiter
to limit the sending rate of each port to 1Gbps. Other host
servers equip with a 4-core Intel i3-3220 3.30GHz CPU and an
Intel 82599ES 10-Gigabit Ethernet NIC. We use an empirical
traffic generator [5], [42] to generate the traffic patterns to
emulate the simple client/server application. Except for the
web search [5] workload, we also use data mining [43]
workloads in this experiment, which is not included in the
training dataset. We measure the average FCT of the best-

performing baselines (i.e., DT and EDT) over different loads.
We repeat the experiment 50 times for each load and report
the average FCT. The experiment lasts 40 minutes for each
baseline and over 43,000 flows are generated in total.

Figure 9(a) shows the average FCT of each policy normal-
ized by that of DT under different traffic loads. NDT out-
performs DT and achieves up to 16% improvement when the
load is low, which shows that NDT can generalize well from
the simulated environment to a real-world switch prototype.
The NDT model evaluated here is solely trained using the
web search workload. However, even facing the unseen traffic
workload, NDT also generalizes well and outperforms other
schemes (Figure 9(b)).

D. NDT deep dive

Learned policy. We illustrate the learned policy by NDT with
a 4-to-2 incast example, where the two active destination port
is marked as A and B. Figure 10 shows the evolution of the
queue length qi and its interaction with threshold Ti of CS,
DT, and NDT1. There are three key observations from the
results. First, CS performs poorly since it does not control
the competition among different ports. For example, during
2.5s to 2.8s in Figure 10(a), port B occupies most of the
buffer which starves the port A resulting in a near-zero queue
length. Second, DT suffers from its fixed control factor so that
it can not fully utilize the buffer (Figure 10(b)). Finally, NDT’s
performance gain comes from the initiative drain of the heavy-
load queue as shown in Figure 10(c). NDT will firstly relax
the threshold to absorb the burst as much as possible (like CS)
but decrease the threshold after absorbing the burst by setting
a small α, which reduces the long-term buffer occupation and
improve the buffer cycle efficiency. Besides, the threshold of
other light-load ports is set with almost no constraint to allow
burst absorbing (not shown).

We also measure the port buffer occupancy when packet
drops (Figure 11). We find that CS drops packets when the
port either occupies all the buffer or starves, which confirms
our finding in Figure 10(a). DT and EDT usually drop packets
around the threshold converge point even when there is still an
unoccupied buffer. NDT starts to drop packets when the port
occupies more than 60% of the total buffer due to its initiative

1We omit the detailed behavior of EDT due to the space limitation.
Generally, it behaves like DT but temporally relaxes the threshold constraints
of the heavy-load port.

737
Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:29:36 UTC from IEEE Xplore. Restrictions apply.

(a) CS policy: average FCT 0.99 seconds. (b) DT policy: average FCT 0.93 seconds. (c) NDT policy: average FCT 0.76 seconds.

Figure 10. For clarity, we only show part of this experiment. Each bar represents the queue status of a 0.1s interval. The portion of q above T is depicted in
a dark color, while the portion of q below T is depicted in tint color. We plot with the maximum queue length and the minimum threshold of each interval.
We also report the average queue length during the interval as the dark line.

Figure 11. Port buffer occupancy when packet drops.

(a) FCT fairness. (b) Inference on testbed.
Figure 12. Micro benchmarks.

drain behavior. Packet dropping of NDT can also sometimes
occur with low buffer occupancy since NDT can not always
achieve a perfect reservation of future traffic.
FCT fairness. Considering the intra- and inter-port competi-
tion between flows, we use a new FCT fairness metric to mea-
sure the fairness among switch ports, i.e. VAR({ FCT i

FCT i
isolated

}).
Here, FCTi is the average FCT of flows that are destined to
port i under a normal experiment while FCT iisolated is the
average FCT of flows that are destined to port i under an
isolated environment where there is no competition between
ports. We refer to this fraction as “port FCT slowdown”.
Finally, we measure the variance of port FCT slowdowns over
all ports as the FCT fairness metric (lower is better). The
intuition behind this metric is that a fair policy will fairly share
the performance degradation between different ports when the
buffer resource is limited while independent of their absolute
performance. As shown in Figure 12(a), ST performs the best
while CS is totally unfair, which validates the effectiveness
of our metric. NDT performs comparably with EDT since
both of them strive to achieve high efficiency by temporarily
sacrificing the fairness among different ports. By doing this
tradeoff, NDT achieves better overall performance. NDT could

achieve better fairness by adding the fairness constraints to the
reward function and we leave this as our future work.
Inference performance. Figure 12(b) shows cumulative dis-
tributions of the trigger interval of NDT’s cumulative-event
trigger mechanism (in red) and the naive per-packet trigger
mechanism (in orange) in our DPDK-based testbed (§V-B).
We also report the model inference time (in blue) of NDT.
The average inference delay of NDT is less than 0.4ms, while
the interval between NDT’s triggers is typically on the scale of
several to tens milliseconds. In all the cases, the inference time
is shorter than the trigger interval of NDT while it is larger
than the per-packet ones. The trigger intervals of the naive
mechanism vary since multiple packet events (e.g., enqueue
or dequeue) could occur concurrently at different ports.

Thus NDT’s trigger mechanism greatly enlarges the decision
interval, reduces the trigger frequency, and loosens the burden
of the AI chips. Note that the inference is conducted with
the CPU on our emulated switch server. The inference time
can be further reduced with speedup techniques, e.g., model
compression [44], which provides a potential that NDT could
be deployed in switches without AI chips by using the control
plane CPU to make the inference. We also measure the
trigger interval of two mechanisms in a simulated 100Gbps
environment. The per-packet mechanism triggers at the scale
of nano- even pico-seconds while NDT’s trigger mechanism
still works at a larger time scale, i.e., micro- to milli-seconds,
which matches the inference speed of AI-chips [30].

VII. CONCLUSION

In this paper, we show that learning effective buffer man-
agement policies automatically using reinforcement learning
is feasible. NDT’s design principle is consistent with the
recent research trend of combining learning-based methods
with heuristics [21]–[23]. NDT’s learning innovations, such
as its permutation-equivariant neural network design, may be
applied to other permutation-symmetric networking problems.

ACKNOWLEDGMENT

This work was supported in part by the NSFC Project of
China (No. 6213000078 and No. 61872211). We thank Antong
Shan, Xiaoyu Cheng, Deping Peng, Linbo Hui for their work
on the early version of this paper.

738
Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:29:36 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
ACM SIGCOMM Computer Communication Review, vol. 34, no. 4, pp.
281–292, 2004.

[2] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav et al., “Conga:
Distributed congestion-aware load balancing for datacenters,” in ACM
SIGCOMM, 2014.

[3] U. Cummings, A. Lines, P. Pelletier, and R. Southworth, “Shared-
memory switch fabric architecture,” Oct. 12 2010, uS Patent 7,814,280.

[4] S. Das and R. Sankar, “Broadcom smart-buffer technology in data center
switches for cost-effective performance scaling of cloud applications,”
2012.

[5] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in ACM
SIGCOMM, 2010.

[6] D. Shan, W. Jiang, and F. Ren, “Analyzing and enhancing dynamic
threshold policy of data center switches,” IEEE TPDS, 2017.

[7] A. K. Choudhury and E. L. Hahne, “Dynamic queue length thresholds
for shared-memory packet switches,” IEEE/ACM Transactions On Net-
working, 1998.

[8] A. Kesselman and Y. Mansour, “Harmonic buffer management policy
for shared memory switches,” Theoretical Computer Science, 2004.

[9] I. Cidon, L. Georgiadis, R. Guerin, and A. Khamisy, “Optimal buffer
sharing,” IEEE Journal on Selected Areas in Communications, 1995.

[10] E. L. Hahne and A. K. Choudhury, “Dynamic queue length thresholds
for multiple loss priorities,” IEEE/ACM Transactions On Networking,
2002.

[11] G. Ascia, V. Catania, and D. Panno, “An evolutionary management
scheme in high-performance packet switches,” IEEE/ACM Transactions
On Networking, 2005.

[12] S. X. Wei, E. J. Coyle, and M.-T. Hsiao, “An optimal buffer management
policy for high-performance packet switching,” in IEEE GLOBECOM,
1991.

[13] M. Apostolaki, L. Vanbever, and M. Ghobadi, “Fab: Toward flow-
aware buffer sharing on programmable switches,” in Online Program:
Workshop on Buffer Sizing, 2019.

[14] H. Yousefi’zadeh and E. A. Jonckheere, “Dynamic neural-based buffer
management for queuing systems with self-similar characteristics,” IEEE
Transactions on Neural Networks, 2005.

[15] S. Huang, M. Wang, and Y. Cui, “Traffic-aware buffer management in
shared memory switches,” in IEEE INFOCOM, 2021, pp. 1–10.

[16] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang, “Machine learning
for networking: Workflow, advances and opportunities,” IEEE Network,
2017.

[17] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in ACM SIGCOMM, 2017.

[18] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-
izadeh, “Learning scheduling algorithms for data processing clusters,”
in ACM SIGCOMM, 2019.

[19] M. Wang, Y. Cui, S. Xiao, X. Wang, D. Yang, K. Chen, and J. Zhu,
“Neural network meets dcn: Traffic-driven topology adaptation with
deep learning,” ACM SIGMETRICS, 2018.

[20] L. Zhang, M. Wang, Z. Yang, and Y. Jiang, “Machine learning for
internet congestion control: Techniques and challenges,” IEEE Internet
Computing, 2019.

[21] L. Chen, J. Lingys, K. Chen, and F. Liu, “Auto: Scaling deep rein-
forcement learning for datacenter-scale automatic traffic optimization,”
in ACM SIGCOMM, 2018.

[22] H. Zhu, V. Gupta, S. S. Ahuja, Y. Tian, Y. Zhang, and X. Jin, “Network
planning with deep reinforcement learning,” in ACM SIGCOMM, 2021.

[23] S. Abbasloo, C.-Y. Yen, and H. J. Chao, “Classic meets modern: A
pragmatic learning-based congestion control for the internet,” in ACM
SIGCOMM, 2020.

[24] “A cloudengine switch built for the ai era,” http://e.huawei.com/topic/c
loud-engine2019/en/index.html, accessed December 22, 2021.

[25] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, 2015.

[26] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,

M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, 2016.

[27] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov,
and A. J. Smola, “Deep sets,” in NeurIPS, 2017.

[28] N. Guttenberg, N. Virgo, O. Witkowski, H. Aoki, and R. Kanai,
“Permutation-equivariant neural networks applied to dynamics predic-
tion,” arXiv preprint arXiv:1612.04530, 2016.

[29] E. Wagstaff, F. B. Fuchs, M. Engelcke, I. Posner, and M. Osborne, “On
the limitations of representing functions on sets,” ICML, 2019.

[30] “Announcing hanguang 800: Alibaba’s first ai-inference chip,”
https://www.alibabacloud.com/blog/announcing-hanguang-800-alibaba
s-first-ai-inference-chip 595482, accessed December 22, 2021.

[31] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in ICML, 2018.

[32] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Ku-
mar, H. Zhu, A. Gupta, P. Abbeel et al., “Soft actor-critic algorithms
and applications,” arXiv preprint arXiv:1812.05905, 2018.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE CVPR, 2016.

[34] S. Sen, “How to make decisions (optimally)(keynote),” in OPODIS,
2018.

[35] D. Intel, “Data plane development kit,” 2014.
[36] K. Qian, W. Cheng, T. Zhang, and F. Ren, “Gentle flow control: avoiding

deadlock in lossless networks,” in ACM SIGCOMM, 2019.
[37] W. Cheng, K. Qian, W. Jiang, T. Zhang, and F. Ren, “Re-architecting

congestion management in lossless ethernet,” in USENIX NSDI, 2020.
[38] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in USENIX OSDI, 2016.

[39] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in
Modeling and tools for network simulation. Springer, 2010.

[40] P. Gawłowicz and A. Zubow, “ns-3 meets openai gym: The playground
for machine learning in networking research,” in Proceedings of the 22nd
International ACM Conference on Modeling, Analysis and Simulation of
Wireless and Mobile Systems, 2019.

[41] “Packet buffers.” https://people.ucsc.edu/∼warner/buffer.html, accessed
December 22, 2021.

[42] “empirical-traffice-gen.” https://github.com/datacenter/empirical-traffic
-gen.git, accessed December 22, 2021.

[43] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable and flexible
data center network,” in ACM SIGCOMM, 2009.

[44] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model
compression and acceleration for deep neural networks,” arXiv preprint
arXiv:1710.09282, 2017.

739
Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:29:36 UTC from IEEE Xplore. Restrictions apply.

